Answer:
B. ADDITION OF TWO GROUPS ACROSS A DOUBLE BOND
Explanation:
Addition reaction of alkenes involves the conversion of the double bond in alkenes Inyo single bonds by the addition of two groups of atoms or radicals.
During this addition reaction, two substances, an unsaturated compound(e.g. ethane) and an attacking reagent (hydrogen, halogens, hydrogen halides, chlorine and bromine water) combines to form a single new compound without forming any other products. So a saturated product or one in which is an increase in degree of saturation is formed.
When putting two of the wrong chemicals together it may cause a reaction that is different from what the experiment was meant to be, or nothing could happen.
Hope this helps!! :)
You need to use the % information to determine the empirical formula of the compound first.
The empirical formula is the simplest ratio of atoms in the molecule.
Then use the rest of the data to determine moles of gas, and use this to determine molar mass of gas...
Empirical formula calculations:
Assume you have 100 g, calculate the moles of each atom in the 100 g
moles = mass / molar mass
molar mass C = 12.01 g/mol
molar mass H = 1.008 g/mol
molar mass O = 16.00 g/mol
C = 64.9 % = 64.6 g
H = 13.5 % = 13.5 g
O = 21.6 % = 21.6 g
moles C = 64.6 g / 12.01 g/mol = 5.38 mol
moles H = 13.5 g / 1.008 g/mol = 13.39 mol
moles O = 21.6 g / 16.00 g/mol = 1.35 mol
So ratio of C : H : O
is 5.38 mol : 13.39 mol : 1.35 mol
Divide each number in the ratio by the lowest number to get the simplest whole number ratio
(5.38 / 1.35) : (13.39 / 1.35) : (1.35 / 1.35)
4 : 10 : 1
empirical formula is
C4H10O
Finding moles and molar mass calcs
Now, you know that at 120 deg C and 750 mmHg that 1.00L compound weighs 2.30 g.
We can use this information to determine the molar mass of the gas after first working out how many moles the are in the 1.00 L
PV = nRT
P = pressure = 750 mmHg
V = volume = 1.00 L
n = moles (unknown)
T = temp in Kelvin (120 deg C = (273.15 + 120) Kelvin)
- T = 393.15 Kelvin
R = gas constant, which is 62.363 mmHg L K^-1 mol^-1 (when your P is in mmHg and volume is in L)
n = PV / RT
n = (750 mmHg x 1.00 L) / (62.363mmHg L K^-1 mol^-1 x 393.15 K)
n = 0.03059 moles of gas
We know moles = 0.03509 and mass = 2.30 g
So we can work out molar mass of the gas
moles = mass / molar mass
Therefore molar mass = mass / moles
molar mass = 2.30 g / 0.03059 mol
= 75.19 g/mol
Determine molecular formula
So empirical formula is C4H10O
molar mass = 75.19 g/mol
To find the molecular formula you divide the molar mass by the formula weight of the empirical formula...
This tells you how many times the empirical formula fits into the molecular formula. Tou then multiply every atom in the empirical formula by this number
formula weight C4H10O = 74.12 g/mol
Divide molar mass by formula weight empirical
75.15 g/mol / 74.12 g/mol
= 1
(It doesn't matter that the number don't quite match, they rarely do in this type of calc (although I could have made a slight error somewhere) but the numbers are very close, so we can say 1.)
The empirical formula only fits into the molar mass once,
molecular formula thus = empirical formula
<span>
C4H10O
Therefore, the </span>molecular formula of the compound is <span>C4H10O.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!</span>
Decrease in temperature is -126.0°C
<u>Explanation:</u>
Using Charles law we can set up the equation as,
V₁/T₁ = V₂/T₂
(2.00 L) / 294.0 K) = (1.00 L) / (x)
cross multiply to get:
2x = 294
2x/2 = 294/2
x = 147.0 K
Now kelvin is converted into Celsius by subtracting 273 from 147 as,
147 - 273 = -126°C