Answer:
-4h < - 14
We solve for h by applying the inverse operations;
The inverse operation of multiplication is division, so we divide by -4 on both sides;
/-4 /-4
h < 3.5, it could be <u>3.4, 3.3, 3.2 3.123, 2.4, 2.576</u>, there are tons of numbers below 3.5.
<u>So anything below 3.5 would best be suitable for the equation.</u>
Step-by-step explanation:
- 90 + (x + 5) + (2x - 2) = 180
- x + 5 + 2x - 2 = 180 - 90
- 3x + 3 = 90
- 3x = 87
- x = 29
Step-by-step explanation:
This is known as the triple tangent identity. Start with the fact that the three angles add up to 0.
(x − y) + (z − x) + (y − z) = 0
Subtract two terms to the other side and take the tangent:
x − y = -((z − x) + (y − z))
tan(x − y) = tan(-((z − x) + (y − z)))
Use reflection property:
tan(x − y) = -tan((z − x) + (y − z))
Now use angle sum identity:
tan(x − y) = -[tan(z − x) + tan(y − z)] / [1 − tan(z − x) tan(y − z)]
tan(x − y) = [tan(z − x) + tan(y − z)] / [tan(z − x) tan(y − z) − 1]
tan(x − y) [tan(z − x) tan(y − z) − 1] = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) − tan(x − y) = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) = tan(x − y) + tan(z − x) + tan(y − z)
Answer:
isoceles but not equilateral
Step-by-step explanation:
it has two sides that are the same length, but not all three sides are the same length
An equilateral triangle is therefore a special case of an isosceles triangle having not just two, but all three sides equal
About 3 in a half years I think