=> x² = (2.4)² + (4.8)²
=> x² = 5.76 + 23.04
=> x² = 28.8
=> x = 5.366563146
=> x = 5.4
Ans: 2nd option (5.4)
Hope this helps!
Answers:
Ava’s graph is a vertical translation of f(x) = x^2.
Ava’s graph moved 4 units from f(x) = x^2 in a positive direction.
Ava’s graph has a y-intercept of 4.
Given:
Ava graphs the function
.
Victor graphs the function 
To find y intercept we plug in 0 for x

= 4
So ,Ava’s graph has a y-intercept of 4.
Ava graphs the function 
If any number is added at the end then the graph will be shifted up. 4 is added at the end so there will be vertical translation.
Hence , Ava’s graph is a vertical translation of f(x) = x^2. Also Ava moved 4 units up from f(x) = x^2 in a positive y- direction.
Victor graphs the function 
If any number added with x then the graph will be shifted left. the graph will be shifted in negative x direction.
Answer:
i dont know what you mean but
3x(4x-3) simplified is 12x - 4 or 12x+(-4)
Resposta:
Primer rectangle:
Amplada = 11
Longitud = 14
Segon rectangle:
Amplada = 12
Longitud = 15
Tercer rectangle:
Amplada = 13
Longitud = 16
Explicació pas a pas:
Donat que:
Primer rectangle:
Amplada = x
Longitud = x + 3
2n rectangle:
Augment de la dimensió d'1 cm respecte al primer rectangle;
Amplada = x + 1
Longitud = x + 4
3r rectangle:
Augment de la dimensió de 2 cm respecte al primer rectangle;
Amplada = x + 2
Longitud = x + 5
Suma dels tres perímetres del rectangle:
Perímetre d'un rectangle: 2 (l + O)
Primer rectangle:
2 (x + x + 3) = 2 (2x + 3) = 4x + 6
2n:
2 (x + 1 + x + 4) = 2 (2x + 5) = 4x + 10
3r:
2 (x + 2 + x + 5) = 2 (2x + 7) = 4x + 14
Suma de perímetres = 162
(4x + 6 + 4x + 10 + 4x + 14) = 162
12x + 30 = 162
12x = 162 - 30
12x = 130
x = 11
Per tant,
Primer rectangle:
Amplada = 11
Longitud = 11 + 3 = 14
2n rectangle:
Amplada = 11 + 1 = 12
Longitud = 11 + 4 = 15
3r rectangle:
Amplada = 11 + 2 = 13
Longitud = 11 + 5 = 16
Answer:
Segment Addition Postulate
Step-by-step explanation: