(x1,y1) = (-2,7)
m = -5
(x,y) = (a,2)
Forming the equation,
(y-y1) = m(x-x1)
y - 7 = -5[x - (-2)]
y - 7 = -5x - 10
y + 5x = -3
Putting the values of (x,y) we get,
2 + 5a = -3
5a = -5
a = -1
A^3
a to the power of three
Answer:
The probability is 0.3576
Step-by-step explanation:
The probability for the ball to fall into the green ball in one roll is 2/1919+2 = 2/40 = 1/20. The probability for the ball to roll into other color is, therefore, 19/20.
For 25 rolls, the probability for the ball to never fall into the green color is obteined by powering 19/20 25 times, hence it is 19/20^25 = 0.2773
To obtain the probability of the ball to fall once into the green color, we need to multiply 1/20 by 19/20 powered 24 times, and then multiply by 25 (this corresponds on the total possible positions for the green roll). The result is 1/20* (19/20)^24 *25 = 0.3649
The exercise is asking us the probability for the ball to fall into the green color at least twice. We can calculate it by substracting from 1 the probability of the complementary event: the event in which the ball falls only once or 0 times. That probability is obtained from summing the disjoint events: the probability for the ball falling once and the probability of the ball never falling. We alredy computed those probabilities.
As a result. The probability that the ball falls into the green slot at least twice is 1- 0.2773-0.3629 = 0.3576
Answer:
360
Step-by-step explanation:
there are no graphs but the equation is y=3x-1