Answer:
1.089%
Explanation:
From;
ν =1/2πc(k/meff)^1/2
Where;
ν = wave number
meff = reduced mass or effective mass
k = force constant
c= speed of light
Let
ν =1/2πc (k/meff)^1/2 vibrational wave number for 23Na35 Cl
ν' =1/2πc(k'/m'eff)^1/2 vibrational wave number for 23Na37 Cl
The between the two is obtained from;
ν' - ν /ν = (k'/m'eff)^1/2 - (k/meff)^1/2 / (k/meff)^1/2
Therefore;
ν' - ν /ν = [meff/m'eff]^1/2 - 1
Substituting values, we have;
ν' - ν /ν = [(22.9898 * 34.9688/22.9898 + 34.9688) * (22.9898 + 36.9651/22.9898 * 36.9651)]^1/2 -1
ν' - ν /ν = -0.01089
percentage difference in the fundamental vibrational wavenumbers of 23Na35Cl and 23Na37Cl;
ν' - ν /ν * 100
|(-0.01089)| × 100 = 1.089%
Answer:
3)Some gas molecules move further apart and some move closer together.
Explanation:
because When more gas particles enter a container, there is less space for the particles to spread out, and they become compressed. The particles exert more force on the interior volume of the container. This force is called pressure. There are several units used to express pressure.
Answer:
Living organisms present in soil include archaea, bacteria, actinomycetes, fungi, algae, protozoa, and a wide variety of larger soil fauna, including springtails, mites, nematodes, earthworms, ants, insects that spend all or part of their life underground, and larger organisms such as burrowing rodents.
Explanation:
Answer:
2.8 L
Explanation:
From the question given above, the following data were obtained:
Number of mole (n) = 0.109 mole
Pressure (P) = 0.98 atm
Temperature (T) = 307 K
Gas constant (R) = 0.0821 atm.L/Kmol
Volume (V) =?
The volume of the helium gas can be obtained by using the ideal gas equation as follow:
PV = nRT
0.98 × V = 0.109 × 0.0821 × 307
0.98 × V = 2.7473123
Divide both side by 0.98
V = 2.7473123 / 0.98
V = 2.8 L
Thus, the volume of the helium gas is 2.8 L.
Reichsteins substance if I remember correctly.
Hope this helped! :)
- Juju