It is a Compound. have a nice day
Explanation:
mass H2O2 = 55 mL(1.407 g/mL) = 80.85 g
molar mass H2O2 = 2(1.01 g/mol) + 2(16.00 g/mol) = 34.02 g/mol
moles H2O2 = 80.85 g/34.02 g/mol = 2.377 moles H2O2
For each mole of H2O2 you obtain 0.5 mole of O2 (see the equation).
moles O2 = 2.377 moles H2O2 (1 mole O2)/(2 moles H2O2) = 1.188 moles O2
Now, you need the temperature. If you are at STP (273 K, and 1.00 atm) then 1 mole of an ideal gas at STP has a volume of 22.4 L. Without temperature you are not really able to continue. I will assume you are at STP.
Volume O2 = 1.188 moles O2(22.4 L/mole) = 0.0530 L of O2.
which is 53 mL.
Answer:
See figure 1
Explanation:
If we want to find the acid and the Brønsted-Lowry base, we must remember the definition for each of these molecules:
-) Acid: hydrogen donor
-) Base: hydrogen acceptor
In the <u>caffeine structure,</u> we have several atoms of nitrogen. These nitrogen atoms have the ability to <u>accept</u> hydronium ions (
). Therefore the caffeine molecule will be the base since it can accept
If caffeine is the base, the water must be the acid. So, the water in this reaction donated a hydronium ion.
<u>Thus, caffeine is the base and water the acid. (See figure 1)</u>