Answer:
Explanation:
Mole = no. Molecules/6.02×10^23
Mole = (1.40×10^24)/(6.02×10^23)
Mole = 2.33mole
Answer:
The molarity of the solution is 0.048 M (option B)
Explanation:
<u>Step 1: </u>Data given
Sucralfate has a molar mass of 2087 g/mole
mass = 1g
volume = 10 mL
<u>Step 2: </u> Calculate moles of sucralfate
Number of moles = mass of sucralfate / Molar mass of sucralfate
Number of moles = 1 g / 2087 g/mole = 4.79 * 10^-4 moles
<u>Step 3:</u> Calculate molarity
Molarity = Number of moles / volume
Molarity = (4.79 * 10^-4 moles) / (10 *10^-3 L)
Molarity = 0.0479 M ≈ 0.048 M
The molarity of the solution is 0.048 M (option B)
You use the equation q=mcdeltaT delta t=the chang in temp m=the mass of water and c=the specific heat capacity which for water is usually 4.18kJ
q is the amount of energy which you are trying to figure out
im sorry that i dont know the overall units for the equation but hope this helps you
:) :)
Answer:
The correct answer is - 29.45 / 100 x 25.6 = 7.5392 grams
Explanation:
It is given in the question that in 100 gms of CaSO4 there are 29.45 grams of Ca present and there is 25.6 gram of total CaSO4 sample present, So, to calculate the exact value of calcium in this given sample is:
mass of Ca = total amount of sample*percentage of calcium in sample /100
M of Ca =25.6*29.45/100
M of Ca = 7.5392 grams
Thus, the correct procedure is given by 29.45 / 100 x 25.6 = 7.5392 grams