Answer:
Area under the normal curve: 0.6915.
69.15% probability of putting less than 24 ounces in a cup.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

You have been asked to calculate the probability of putting less than 24 ounces in a cup.
pvalue of Z when X = 24. So



has a pvalue of 0.6915
Area under the normal curve: 0.6915.
69.15% probability of putting less than 24 ounces in a cup.
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Coordinates (x, y)
- Midpoint Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
Point (2, 9)
Point (8, 1)
<u>Step 2: Identify</u>
(2, 9) → x₁ = 2, y₁ = 9
(8, 1) → x₂ = 8, y₂ = 1
<u>Step 3: Find Midpoint</u>
Simply plug in your coordinates into the midpoint formula to find midpoint
- Substitute in points [Midpoint Formula]:

- [Fractions] Add:

- [Fractions] Divide:

There are four terms in that expression.
Answer:
Option 2
Step-by-step explanation:
We know that the graph will face down (the negative sign)
We also know that the vertex should be (-2, 1)
Therefore, option 2 is the solution
1/8 cup of sugar in each mufin