1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brums [2.3K]
3 years ago
7

Please help me one question left

Mathematics
2 answers:
siniylev [52]3 years ago
6 0

Answer: is D

Step-by-step explanation:

madreJ [45]3 years ago
4 0

Answer:

thanks for points

Step-by-step explanation:

too easy boi

You might be interested in
Look at the screenshot please for question!<br> Answer choices:<br> 18<br> 20<br> 21<br> 25
katen-ka-za [31]

Answer:

The Answer is 18 then 25 then 21 then 20

Step-by-step explanation:

5 0
3 years ago
URGENTTT Whos correct and Why?
andreyandreev [35.5K]
Bills right because the y-intercept is 50 so I’m think what he’s saying about the rocket being launched 50 feet above water is right
4 0
3 years ago
How do I solve this math problem?
Nat2105 [25]

Answer: 4x² + 4x - 2 - \frac{3}{2x+3}

<u>Step-by-step explanation:</u>

You can use either synthetic or long division.  I am using synthetic division:

2x + 3 = 0   ⇒   x = -\frac{3}{2}

 -\frac{3}{2}   |    4    10    4    -6

       <u>|    ↓    -6    -6    3 </u>

            4     4    -2   -3  ← <em>-3 is the remainder</em>

            ↓     ↓     ↓

           4x² +4x  -2  ← <em>factored polynomial</em>

3 0
3 years ago
Find all the solutions for the equation:
Contact [7]

2y^2\,\mathrm dx-(x+y)^2\,\mathrm dy=0

Divide both sides by x^2\,\mathrm dx to get

2\left(\dfrac yx\right)^2-\left(1+\dfrac yx\right)^2\dfrac{\mathrm dy}{\mathrm dx}=0

\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{2\left(\frac yx\right)^2}{\left(1+\frac yx\right)^2}

Substitute v(x)=\dfrac{y(x)}x, so that \dfrac{\mathrm dv(x)}{\mathrm dx}=\dfrac{x\frac{\mathrm dy(x)}{\mathrm dx}-y(x)}{x^2}. Then

x\dfrac{\mathrm dv}{\mathrm dx}+v=\dfrac{2v^2}{(1+v)^2}

x\dfrac{\mathrm dv}{\mathrm dx}=\dfrac{2v^2-v(1+v)^2}{(1+v)^2}

x\dfrac{\mathrm dv}{\mathrm dx}=-\dfrac{v(1+v^2)}{(1+v)^2}

The remaining ODE is separable. Separating the variables gives

\dfrac{(1+v)^2}{v(1+v^2)}\,\mathrm dv=-\dfrac{\mathrm dx}x

Integrate both sides. On the left, split up the integrand into partial fractions.

\dfrac{(1+v)^2}{v(1+v^2)}=\dfrac{v^2+2v+1}{v(v^2+1)}=\dfrac av+\dfrac{bv+c}{v^2+1}

\implies v^2+2v+1=a(v^2+1)+(bv+c)v

\implies v^2+2v+1=(a+b)v^2+cv+a

\implies a=1,b=0,c=2

Then

\displaystyle\int\frac{(1+v)^2}{v(1+v^2)}\,\mathrm dv=\int\left(\frac1v+\frac2{v^2+1}\right)\,\mathrm dv=\ln|v|+2\tan^{-1}v

On the right, we have

\displaystyle-\int\frac{\mathrm dx}x=-\ln|x|+C

Solving for v(x) explicitly is unlikely to succeed, so we leave the solution in implicit form,

\ln|v(x)|+2\tan^{-1}v(x)=-\ln|x|+C

and finally solve in terms of y(x) by replacing v(x)=\dfrac{y(x)}x:

\ln\left|\frac{y(x)}x\right|+2\tan^{-1}\dfrac{y(x)}x=-\ln|x|+C

\ln|y(x)|-\ln|x|+2\tan^{-1}\dfrac{y(x)}x=-\ln|x|+C

\boxed{\ln|y(x)|+2\tan^{-1}\dfrac{y(x)}x=C}

7 0
3 years ago
Can you explain why in detail please?
Igoryamba

it would be the graph on the right.

 Since the equation ends with +2 the line would be 2 above the x axis

4 0
2 years ago
Other questions:
  • the area of ava rectangular back yard is 325 square yards.if the length of the yards is 13 yards,what is the width of the yard
    7·2 answers
  • What are the zeros of f(x)=x^2-12+36
    15·1 answer
  • F(x) = 3x2 – 2x + 4 and g(x) = 5x2 + 6x – 8, find (f – g)(x)
    6·1 answer
  • Point
    13·2 answers
  • If ∠o = 125°, what does ∠z equal in this figure? <br><br>    A. 180°B. 35°C. 55°D. 125°
    11·1 answer
  • Help me with this i dont really get it
    8·1 answer
  • Is the equation y = x^2 -6 linear?
    12·2 answers
  • Which equation has no solution?
    11·2 answers
  • George drives 4 hours. Each hour the gas tank changes by -¼ gallon. What is the total change in the gallons of gas in the tank?
    9·1 answer
  • 7 is 5% of what number
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!