1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elena L [17]
3 years ago
15

Find the value of X.

Mathematics
1 answer:
Tju [1.3M]3 years ago
4 0

Answer:

A number

Step-by-step explanation:

it cant be nothing

You might be interested in
What is the volume of a square pyramids
frozen [14]

Answer:

\large\boxed{V=75\ in^3}

Step-by-step explanation:

The formula ogf a volume of  a pyramid:

V=\dfrac{1}{3}BH

B - area of a base

H - height

We have a base length a = 5 in and a height H = 9 in.

In the base we have a square. The formula of an area of a square is:

B=a^2

Substitute:

B=5^2=25\ in^2

Calculate the volume:

V=\dfrac{1}{3}(25)(9)=(25)(3)=75\ in^3

7 0
3 years ago
x2 + y2 − 4x + 12y − 20 = 0 (x − 6)2 + (y − 4)2 = 56 x2 + y2 + 6x − 8y − 10 = 0 (x − 2)2 + (y + 6)2 = 60 3x2 + 3y2 + 12x + 18y −
snow_tiger [21]
For this case, what we must do is fill squares in all the expressions until we find the correct result.
 We have then:
 
 x2 + y2 − 4x + 12y − 20 = 0 x2 + y2  − 4x + 12y = 20
 x2  − 4x + y2 + 12y = 20
 x2  − 4x + (12/2)^2 + y2 + 12y  + (-4/2)^2 = 20 + (12/2)^2 + (-4/2)^2
 x2  − 4x + (6)^2 + y2 + 12y  + (-2)^2 = 20 + (6)^2 + (-2)^2
 x2  − 4x + 36 + y2 + 12y  + 4 = 20 + 36 + 4
 (x − 2)2 + (y + 6)2 = 60 

 
3x2 + 3y2 + 12x + 18y − 15 = 0 
 
x2 + y2 + 4x + 6y − 5 = 0 
 x2 + y2 + 4x + 6y  = 5 
 x2  + 4x + (4/2)^2 + y2 + 6y + (6/2)^2 = 5 + (4/2)^2 + (6/2)^2 
 x2  + 4x + (2)^2 + y2 + 6y + (3)^2 = 5 + (2)^2 + (3)^2 
 x2  + 4x + 4 + y2 + 6y + 9 = 5 + 4 + 9 
 (x + 2)2 + (y + 3)2 = 18 

 2x2 + 2y2 − 24x − 16y − 8 = 0
 x2 + y2 − 12x − 8y − 4 = 0
 x2 + y2 − 12x − 8y = 4 
 x2 − 12x + (-12/2)^2 + y2 − 8y + (-8/2)^2 = 4 + (-12/2)^2 + (-8/2)^2
 x2 − 12x + (-6)^2 + y2 − 8y + (-4)^2 = 4 + (-6)^2 + (-4)^2
 x2 − 12x + 36 + y2 − 8y + 16 = 4 + 36 + 16
 (x − 6)2 + (y − 4)2 = 56 

 x2 + y2 + 2x − 12y − 9 = 0
 x2 + y2  + 2x - 12y = 9
 x2  + 2x + y2 - 12y = 9
 x2  + 2x + (2/2)^2 + y2 - 12y  + (-12/2)^2 = 9 + (2/2)^2 + (-12/2)^2
 x2  + 2x + (1)^2 + y2 - 12y  + (-6)^2 = 9 + (1)^2 + (-6)^2
 x2  + 2x + 1 + y2 - 12y  + 36 = 9 + 1 + 36
 (x + 1)2 + (y − 6)2 = 46
7 0
3 years ago
A company rents bicycles to customers. The company charges an initial fee
photoshop1234 [79]
The hourly rate is $3 a hour with a $2 initial fee.
5 0
3 years ago
Find a particular solution to the nonhomogeneous differential equation y′′+4y=cos(2x)+sin(2x).
I am Lyosha [343]
Take the homogeneous part and find the roots to the characteristic equation:

y''+4y=0\implies r^2+4=0\implies r=\pm2i

This means the characteristic solution is y_c=C_1\cos2x+C_2\sin2x.

Since the characteristic solution already contains both functions on the RHS of the ODE, you could try finding a solution via the method of undetermined coefficients of the form y_p=ax\cos2x+bx\sin2x. Finding the second derivative involves quite a few applications of the product rule, so I'll resort to a different method via variation of parameters.

With y_1=\cos2x and y_2=\sin2x, you're looking for a particular solution of the form y_p=u_1y_1+u_2y_2. The functions u_i satisfy

u_1=\displaystyle-\int\frac{y_2(\cos2x+\sin2x)}{W(y_1,y_2)}\,\mathrm dx
u_2=\displaystyle\int\frac{y_1(\cos2x+\sin2x)}{W(y_1,y_2)}\,\mathrm dx

where W(y_1,y_2) is the Wronskian determinant of the two characteristic solutions.

W(\cos2x,\sin2x)=\begin{bmatrix}\cos2x&\sin2x\\-2\cos2x&2\sin2x\end{vmatrix}=2

So you have

u_1=\displaystyle-\frac12\int(\sin2x(\cos2x+\sin2x))\,\mathrm dx
u_1=-\dfrac x4+\dfrac18\cos^22x+\dfrac1{16}\sin4x

u_2=\displaystyle\frac12\int(\cos2x(\cos2x+\sin2x))\,\mathrm dx
u_2=\dfrac x4-\dfrac18\cos^22x+\dfrac1{16}\sin4x

So you end up with a solution

u_1y_1+u_2y_2=\dfrac18\cos2x-\dfrac14x\cos2x+\dfrac14x\sin2x

but since \cos2x is already accounted for in the characteristic solution, the particular solution is then

y_p=-\dfrac14x\cos2x+\dfrac14x\sin2x

so that the general solution is

y=C_1\cos2x+C_2\sin2x-\dfrac14x\cos2x+\dfrac14x\sin2x
7 0
3 years ago
Simplify for x. (10-5 2/3)×(-2)+x=8 2/3​
polet [3.4K]

Answer:

16/37 I just did this... answer mines pls

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • Factor these expressions: <br> A. 4x+12<br> B. 8r-14<br> C. 5x+35
    14·1 answer
  • D=150 ft r=20 ft per min. t=?
    12·1 answer
  • When Arjun makes hot cocoa, he adds 20ml of chocolate syrup for every 3 ounces of hot water. Arjun's brother, Eli, adds 45mL of
    15·1 answer
  • A school bake sale earned over 25$ from selling cookies which cost 3$ each how many cookies did they sell identify the numbers t
    8·1 answer
  • 5. Find the area of the figure.
    13·1 answer
  • 14) Find the slope of the line containing the points (5, 3) and (-7, 2).
    7·1 answer
  • A delivery service charges $1.25 for
    14·1 answer
  • Over a period of 3 hours, the outside temperature changed an average of -2.25 fahrenheit per hour. select the correct sentence t
    15·2 answers
  • Please I need help it’s an emergency
    8·1 answer
  • A 111-unit by 444-unit rectangle is shown below.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!