1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marizza181 [45]
3 years ago
12

How do I determine which is y=-1/3x+2?

Mathematics
1 answer:
Jlenok [28]3 years ago
6 0

Step-by-step explanation:

This is a linear equation in slope intercept form which is

y = mx + b

where m is the slope and b is the y intercept.

The equation

y =  -  \frac{1}{3} x + 2

Has a slope of -1/3 so this means that the slope will be decreasing. A negative linear equation increases as we go left. and decreases as we go right. The y intercept is 2. So this means the graph must pass through (0,2) and when x=0, y must be 2.

In other words, look for a line that the y values increase as we go left and decrease we go right. Also look for a point (0,2) and make sure the graph pass through it.

You might be interested in
Consider the integral Integral from 0 to 1 e Superscript 6 x Baseline dx with nequals 25 . a. Find the trapezoid rule approximat
photoshop1234 [79]

Answer:

a.

With n = 25, \int_{0}^{1}e^{6 x}\ dx \approx 67.3930999748549

With n = 50, \int_{0}^{1}e^{6 x}\ dx \approx 67.1519320308594

b. \int_{0}^{1}e^{6 x}\ dx \approx 67.0715427161943

c.

The absolute error in the trapezoid rule is 0.08047

The absolute error in the Simpson's rule is 0.00008

Step-by-step explanation:

a. To approximate the integral \int_{0}^{1}e^{6 x}\ dx using n = 25 with the trapezoid rule you must:

The trapezoidal rule states that

\int_{a}^{b}f(x)dx\approx\frac{\Delta{x}}{2}\left(f(x_0)+2f(x_1)+2f(x_2)+...+2f(x_{n-1})+f(x_n)\right)

where \Delta{x}=\frac{b-a}{n}

We have that a = 0, b = 1, n = 25.

Therefore,

\Delta{x}=\frac{1-0}{25}=\frac{1}{25}

We need to divide the interval [0,1] into n = 25 sub-intervals of length \Delta{x}=\frac{1}{25}, with the following endpoints:

a=0, \frac{1}{25}, \frac{2}{25},...,\frac{23}{25}, \frac{24}{25}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

2f\left(x_{1}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

2f\left(x_{2}\right)=2f\left(\frac{2}{25}\right)=2 e^{\frac{12}{25}}=3.23214880438579

...

2f\left(x_{24}\right)=2f\left(\frac{24}{25}\right)=2 e^{\frac{144}{25}}=634.696657835701

f\left(x_{25}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the trapezoid rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{50}(1+2.54249830064281+3.23214880438579+...+634.696657835701+403.428793492735)\approx 67.3930999748549

  • To approximate the integral \int_{0}^{1}e^{6 x}\ dx using n = 50 with the trapezoid rule you must:

We have that a = 0, b = 1, n = 50.

Therefore,

\Delta{x}=\frac{1-0}{50}=\frac{1}{50}

We need to divide the interval [0,1] into n = 50 sub-intervals of length \Delta{x}=\frac{1}{50}, with the following endpoints:

a=0, \frac{1}{50}, \frac{1}{25},...,\frac{24}{25}, \frac{49}{50}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

2f\left(x_{1}\right)=2f\left(\frac{1}{50}\right)=2 e^{\frac{3}{25}}=2.25499370315875

2f\left(x_{2}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

...

2f\left(x_{49}\right)=2f\left(\frac{49}{50}\right)=2 e^{\frac{147}{25}}=715.618483417705

f\left(x_{50}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the trapezoid rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{100}(1+2.25499370315875+2.54249830064281+...+715.618483417705+403.428793492735) \approx 67.1519320308594

b. To approximate the integral \int_{0}^{1}e^{6 x}\ dx using 2n with the Simpson's rule you must:

The Simpson's rule states that

\int_{a}^{b}f(x)dx\approx \\\frac{\Delta{x}}{3}\left(f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+...+2f(x_{n-2})+4f(x_{n-1})+f(x_n)\right)

where \Delta{x}=\frac{b-a}{n}

We have that a = 0, b = 1, n = 50

Therefore,

\Delta{x}=\frac{1-0}{50}=\frac{1}{50}

We need to divide the interval [0,1] into n = 50 sub-intervals of length \Delta{x}=\frac{1}{50}, with the following endpoints:

a=0, \frac{1}{50}, \frac{1}{25},...,\frac{24}{25}, \frac{49}{50}, 1=b

Now, we just evaluate the function at these endpoints:

f\left(x_{0}\right)=f(a)=f\left(0\right)=1=1

4f\left(x_{1}\right)=4f\left(\frac{1}{50}\right)=4 e^{\frac{3}{25}}=4.5099874063175

2f\left(x_{2}\right)=2f\left(\frac{1}{25}\right)=2 e^{\frac{6}{25}}=2.54249830064281

...

4f\left(x_{49}\right)=4f\left(\frac{49}{50}\right)=4 e^{\frac{147}{25}}=1431.23696683541

f\left(x_{50}\right)=f(b)=f\left(1\right)=e^{6}=403.428793492735

Applying the Simpson's rule formula we get

\int_{0}^{1}e^{6 x}\ dx \approx \frac{1}{150}(1+4.5099874063175+2.54249830064281+...+1431.23696683541+403.428793492735) \approx 67.0715427161943

c. If B is our estimate of some quantity having an actual value of A, then the absolute error is given by |A-B|

The absolute error in the trapezoid rule is

The calculated value is

\int _0^1e^{6\:x}\:dx=\frac{e^6-1}{6} \approx 67.0714655821225

and our estimate is 67.1519320308594

Thus, the absolute error is given by

|67.0714655821225-67.1519320308594|=0.08047

The absolute error in the Simpson's rule is

|67.0714655821225-67.0715427161943|=0.00008

6 0
3 years ago
Several students were asked how many blocks they walk from home to school each day. The results are shown in the line plot. How
serious [3.7K]

Answer:

25 students.

Step-by-step explanation:

A line plot is a simple graph that shows relationship among the values in a data using a number line.

From the line plot, each dot represents a student. While the number on the line shows the number of blocks walk each day by each student.

It can be deduced from the line plot that;

Only 1 student walks through 7 blocks, 2 walk through 5 blocks, 8 walk 4 blocks, 5 walk 3 blocks, 5 walk 2 blocks and 4 walk through 1 block to school each day.

So that;

1 + 2 + 8 + 5 + 5 + 4 = 25

Therefore, the number of students who took part in the survey is 25.

4 0
3 years ago
What’s the correct answer <br> I need a correct answer ASAP!!!!!
Illusion [34]

Answer:

the first answer

3 1/3 that's the correct answer

5 0
3 years ago
What's the domain for this???
nikklg [1K]
All Real Numbers is the domain
8 0
3 years ago
Read 2 more answers
Please help me I can’t fail it
Hoochie [10]

Answer:

Step-by-step explanation:

1.rational

2.irrational

3.rational

4.rational

5.rational

6.irrational

8 0
3 years ago
Other questions:
  • Which number is the smallest 2, -2, -4 or -5<br> PLEASE HELPPP
    9·2 answers
  • Classify the triangle with angles measuring 40°, 40°, and 100°.
    7·2 answers
  • In kite WXYZ, m∠XWY = 38° and m∠ZYW = 15°.
    11·2 answers
  • Rearrange 3y + 2x = 14<br>Clearly with explanation
    6·2 answers
  • Paid 1134 during 30% off sale. What was the regular price.
    11·1 answer
  • Write an equato
    6·1 answer
  • Helen and Stephanie par
    6·1 answer
  • Please help me solve this
    14·2 answers
  • Janet is playing a game in which she interacts with an environment to solve a puzzle and to meet new characters. She really enjo
    11·1 answer
  • Who drove the fastest?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!