Answer:
1. Potassium
2. increasing towards zero
3. hyperpolarization
4. voltage-regulated Potassium
Explanation:
Membrane potential can be defined as the difference in electric charges inside and outside of a cell. The resting membrane potential (RMP) occurs when there is no net current across the membrane and therefore the cell is in a non-excited state. At the RMP, sodium ions (Na+) are more concentrated inside the extracellular fluid (ECF) than inside the intracellular fluid (ICF), while potassium ions (K+) are more concentrated inside the ICF. The diffusion of K+ outside the cell triggers its hyperpolarization, by becoming the membrane potential more negative compared to the resting potential. As the potential nears +35 mV, the voltage-regulated potassium channels are open, thereby K+ ions leave the cell down its concentration gradient, while voltage-gated Na+ channels become saturated and inactivate.
Answer:
No
Explanation:
That would not be likely. It is a very complicated cycle
The rock is heavy because the mass changes from 10.0kg to 100.0kg in 3.24 seconds
Answer:
Taproot systems feature a single, thick primary root, called the taproot, with smaller secondary roots growing out from the sides. The taproot may penetrate as many as 60 meters (almost 200 feet) below the ground surface. It can plumb very deep water sources and store a lot of food to help the plant survive drought and other environmental extremes. The taproot also anchors the plant very securely in the ground.
Fibrous root systems have many small branching roots, called fibrous roots, but no large primary root. The huge number of threadlike roots increases the surface area for absorption of water and minerals, but fibrous roots anchor the plant less securely
Explanation:
Cell Membrane is the answer