Answer:
The volume of the tumor experimented a decrease of 54.34 percent.
Step-by-step explanation:
Let suppose that tumor has an spherical geometry, whose volume (
) is calculated by:

Where
is the radius of the tumor.
The percentage decrease in the volume of the tumor (
) is expressed by:

Where:
- Absolute decrease in the volume of the tumor.
- Initial volume of the tumor.
The absolute decrease in the volume of the tumor is:


The percentage decrease is finally simplified:
![\%V = \left[1-\left(\frac{R_{f}}{R_{o}}\right)^{3} \right]\times 100\,\%](https://tex.z-dn.net/?f=%5C%25V%20%3D%20%5Cleft%5B1-%5Cleft%28%5Cfrac%7BR_%7Bf%7D%7D%7BR_%7Bo%7D%7D%5Cright%29%5E%7B3%7D%20%5Cright%5D%5Ctimes%20100%5C%2C%5C%25)
Given that
and
, the percentage decrease in the volume of tumor is:
![\%V = \left[1-\left(\frac{0.77\cdot R}{R}\right)^{3} \right]\times 100\,\%](https://tex.z-dn.net/?f=%5C%25V%20%3D%20%5Cleft%5B1-%5Cleft%28%5Cfrac%7B0.77%5Ccdot%20R%7D%7BR%7D%5Cright%29%5E%7B3%7D%20%5Cright%5D%5Ctimes%20100%5C%2C%5C%25)

The volume of the tumor experimented a decrease of 54.34 percent.
You solve for the domain by setting the radicand less than or equal to 0 and solving for x. Dividing by a -x, we switch the sign so we have that the domain is less than or equal to 0, or all negative numbers. We know that it breaks every law in math to have a negative radicand with an even index, so if the domain is all negative values of x, taking a negative of a negative gives us a positive. The negative sign OUTSIDE the radical means you are flipping the graph upside down. So instead of having a range of y is greater than or equal to 0 as does the parent graph, you have flipped it upside down so it heads more negative in regards to the range. Therefore, the domain and the range both have the same sign, thee last choice from above.
The answer is -3, i had a test with the same question
Answer:
3.5 gallons of punch
Step-by-step explanation:
There are 4 quarts in 1 gallon.
Set up equation to convert 14 quarts to gallons: 14÷4 = 3.5.
Elijah made 3.5 gallons of punch.