1. 2500/60 joules/sec
2. 2,500Nm
The total mechanical energy of the ball is the sum of its potential energy U and its kinetic energy K, therefore:

so, the total mechanical energy of the basketball is 118 J.
It’s solved by using a pretty standard formula for efficiency.
Answer:
Startinfg speed is 13.82 m/s
Explanation:
Use equation for realtion between start and final speed :
Vf=Vs+a*t
Vf-final speed
Vs-start speed
Vf=24.44m/s
a=1.77m/s²(acceleration)
t=6.00s(Time)
Vf=Vs+a*t
Vs=a*t-Vf
Vs=1.77m/s²*6s-24.44m/s
Vs=-13.82m/s
The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity