the total electric potential at location P, which is at the center of the rectangle is 0V.
The charges placed at the corner of the rectangle are same in magnitude but different in charge. hence the total electric potential will be same in magnitude but different in charge and will be cancelled. Similarly, all the total electric potential will be cancelled and resultant will be zero.
<h3>
What is total electric potential?</h3>
- The amount of labor required to convey a unit of electric charge from a reference point to a given place in an electric field is known as the electric potential (also known as the electric field potential, potential drop, or the electrostatic potential).
- More specifically, it is the energy per unit charge for a test charge that is negligibly disruptive to the field under discussion. In order to prevent the test charge from gaining kinetic energy or radiating, the travel across the field is also meant to occur with very little acceleration.
- The electric potential at the reference location is, by definition, zero units. Any point may be used as the reference point, but typically it is earth or a point at infinity.
To learn more about total electric potential with the given link
brainly.com/question/14776328
#SPJ4
Answer:
C a fast-moving cold front moved through the area.
Explanation:
This is because, since there is a there is a thunderstorm and high winds in the area, this can only be caused by a fast moving front. Also there is a temperature drop, this can only be caused by the fast moving cold front since a cold front has a low temperature.
Thus, for the area to experience thunderstorms with high winds and a drop in temperature, <u>a fast-moving cold front moved through the area.</u>
Answer:
be mature, it's the only way to be called independent, I will help my parents with doing chores, you will meet new friends
Explanation:
it's just my own understanding
<span>The intermolecular attractions are the caause of attraction between the molecules of liquid water. These intermolecular bonding interactions in water is due to Hydrogen bonding. The hydrogen bonding is in between O and H atoms.</span>