Answer: Option C. p-dichlorobenzene and 1,4-dichlorobenzene.
Explanation:
A line-angle formula with six vertices and a circle inscribed corresponds to the compound known as benzene.
Further, according to the IUPAC standards for naming benzene derivatives, you must first number the position of the substituent. In this case, the substituents (chloros) are located at the positions 1 and 4; also, for the benzene derivatives when they have 2 substituents and the positions are 1 and 4, this configuration is known as <em>para </em>or <em>p </em>configuration.
Additionally, this compound has 2 substituents (chloros) so you have to indicate this number (di).
Therefore, the correct answer is C. p-dichlorobenzene and 1,4-dichlorobenzene.
Answer:
3.43 %
Explanation:
We need to calculate first the number of moles of CeO2 produced in the combustion. Given its formula we know how many moles of Ce atom are present. From there calculate the mass this number of moles this represent and then one can calculate the percentage.
0.1848 g CeO2 x 1 mol CeO2/172.114g = 0.00107 mol CeO2
0.00107 mol CeO2 x 1 mol Ce/ 1 mol CeO2 = 0.00107 mol Ce
.00107 mol Ce x 140.116 g Ce/ mol = 0.150 g Ce
0.150 g Ce/ 4.3718 g sample x 100 = 3.43 %
Answer:
19.4 g of alum, will be its theoretical yield
Explanation:
The reaction is:
2 Al + 2 KOH + 4 H₂SO₄ + 22H₂O → 3H₂ + 2KAl(SO₄)₂•12H₂O
Let's determine the amount of acid.
M are the moles contained in 1 L of solution or it can be mmoles that are contained in 1 mL of solution
M = mmol /mL
M . mL = mmol
We replace: 8.3 mL . 9.9 M = 82.17 mmoles
We convert to moles: 82.17 mmol . 1 mol / 1000mmol = 0.082 moles
Ratio is 4:2
4 moles of sulfuric acid can make 2 moles of alum
By the way, 0.082 moles of acid may produce ( 0.082 . 2) /4 = 0.041085 moles.
We convert moles to mass:
Molar mass of alum is: 473.52 g/mol.
0.041085 moles . 473.52 g/mol = 19.4 g
Molarity can be defined as the number of moles of solute in 1 L solution.
Molarity of Na₂SO₄ solution - 0.200 M
this means there are 0.200 moles in 1 L solution
Molar mass of Na₂SO₄ - 142 g/mol
therefore mass of Na₂SO₄ in 1.00 L - 0.200 mol x 142 g/mol = 28.4 g
a mass of 28.4 g of Na₂SO₄ is present in 1.00 L
Answer:
Explanation:
SODIUM ATOM;
SODIUM ATOM IS NEUTRAL
SODIUM ION;
IT IS A CHARGED SPECIE WITH A CHARGE OF +1
SODIUM ATOM:
THE NUMBER OF PROTONS AND ELECTRONS ARE SAME ie:11
SODIUM ION:
NUMBER OF PROTONS AND ELECTRONS ARE NOT SAME ie. ELETRON: 10, PROTONS:11
HOPE IT WILL HELP:)