1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lunna [17]
3 years ago
11

Perform the indicated operation.

Mathematics
2 answers:
kirza4 [7]3 years ago
7 0

Step-by-step explanation:

1st.

(7x+2×2-6x-4) - (2x+3×2-3x+11)

(7x+4-6x-4)-(2x+6-3x+11)

collect like terms

(7x-6x-4+4)-(2x-3x+11+6)

(x+0)-(-x+17)

multiply - by the bracket

x+0+x-17

collect like terms

x+x+0-17

2x-17=0

2x=17

divide both sides by the coefficient of x

2x/2=17/2

x=17/2

Ivanshal [37]3 years ago
5 0

Answer Solution:4x2 - 2x) - (-5x2 - 8x)

4x2 - 2x) - (-5x2 - 8x)= 4x2 - 2x + 5x2 + 8x.

4x2 - 2x) - (-5x2 - 8x)= 4x2 - 2x + 5x2 + 8x.= 4x2 + 5x2 - 2x + 8x.

4x2 - 2x) - (-5x2 - 8x)= 4x2 - 2x + 5x2 + 8x.= 4x2 + 5x2 - 2x + 8x.= 9x2 + 6x.

but this is the answer = 3x(3x + 2).

You might be interested in
1. a) Name the angle with the largest measure in the figure.
Afina-wow [57]

Answer:

The solution for x that I got is 7.6.

When substituted for x for the two equations, the angle measures are:

86, 38.4, and 55.6.

86 degrees is the largest angle measure.

7 0
11 months ago
Algebra II Help??? Subtracting Fractions<br><br> (2x)/(y^2-x^2) - (x)/(y-x)
denis23 [38]
Make bottom number same

ok, so remember
(a-b)(a+b)=a²+b²
so

to get from (y-x) to (y²-x²), multiply 2nd fraction by (y+x)

so multiply 2nd fraction by (y+x)/(y+x)
\frac{2x}{y^2-x^2}- \frac{(y+x)(x)}{y^2-x^2}=
\frac{2x-x(x+y)}{y^2-x^2}=
\frac{2x-x^2-xy}{y^2-x^2}
4 0
3 years ago
A furniture designer builds a trapezoidal desk with a semicircular cutout. What is the area of the desk?
nirvana33 [79]

Answer:

Area = 26478cm^2

Step-by-step explanation:

Given

See attachment for desk

Required

The area

First, calculate the area of the semicircular cutout

Area = \frac{\pi r^2}{2}

Where

r = 60cm

So:

A_1 = \frac{3.14 * 60^2}{2}

A_1 = \frac{11304}{2}

A_1 = 5652cm^2

Next, the area of the complete trapezium

Area= \frac{1}{2}(a + b) * h

Where

a = 300

b = 2 * r = 2 * 60 = 120

h = 153

So:

A_2 = \frac{1}{2} * (300 + 120) * 153

A_2 = \frac{1}{2} * 420 * 153

A_2 = 32130cm^2

The area of the desk is:

Area = A_2 - A_1

Area = 32130cm^2 - 5652cm^2

Area = 26478cm^2

8 0
2 years ago
Help me plz branniest to whoever is right
nataly862011 [7]

Answer:

-3,8

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
An e-mail filter is planned to separate valid e-mails from spam. The word free occurs in 60% of the spam messages and only 4% of
ANEK [815]

Answer:

(a) 0.152

(b) 0.789

(c) 0.906

Step-by-step explanation:

Let's denote the events as follows:

<em>F</em> = The word free occurs in an email

<em>S</em> = The email is spam

<em>V</em> = The email is valid.

The information provided to us are:

  • The probability of the word free occurring in a spam message is,             P(F|S)=0.60
  • The probability of the word free occurring in a valid message is,             P(F|V)=0.04
  • The probability of spam messages is,

        P(S)=0.20

First let's compute the probability of valid messages:

P (V) = 1 - P(S)\\=1-0.20\\=0.80

(a)

To compute the probability of messages that contains the word free use the rule of total probability.

The rule of total probability is:

P(A)=P(A|B)P(B)+P(A|B^{c})P(B^{c})

The probability that a message contains the word free is:

P(F)=P(F|S)P(S)+P(F|V)P(V)\\=(0.60*0.20)+(0.04*0.80)\\=0.152\\

The probability of a message containing the word free is 0.152

(b)

To compute the probability of messages that are spam given that they contain the word free use the Bayes' Theorem.

The Bayes' theorem is used to determine the probability of an event based on the fact that another event has already occurred. That is,

P(A|B)=\frac{P(B|A)P(A)}{P(B)}

The probability that a message is spam provided that it contains free is:

P(S|F)=\frac{P(F|S)P(S)}{P(F)}\\=\frac{0.60*0.20}{0.152} \\=0.78947\\

The probability that a message is spam provided that it contains free is approximately 0.789.

(c)

To compute the probability of messages that are valid given that they do not contain the word free use the Bayes' Theorem. That is,

P(A|B)=\frac{P(B|A)P(A)}{P(B)}

The probability that a message is valid provided that it does not contain free is:

P(V|F^{c})=\frac{P(F^{c}|V)P(V)}{P(F^{c})} \\=\frac{(1-P(F|V))P(V)}{1-P(F)}\\=\frac{(1-0.04)*0.80}{1-0.152} \\=0.90566

The probability that a message is valid provided that it does not contain free is approximately 0.906.

4 0
3 years ago
Other questions:
  • Find a cubic function with the given zeros.
    7·1 answer
  • What is the solution to 3/4 a&gt; -16?
    15·1 answer
  • Please help!! I don't get it!!
    7·1 answer
  • What is the error in both of these problem<br><br>expain how you got your answer​
    14·1 answer
  • Three times a certain number, n, is 21​
    9·1 answer
  • Fine the length of segment x.
    14·1 answer
  • Members of a health club pays a one-time membership fee of $100 plus a monthly charge of $25. Write an equation to represent the
    7·1 answer
  • TRUE OR FALSE , When you divide the numerator of a fraction by the denominator you always get a terminating decimal?
    14·2 answers
  • Help help help help math math
    8·1 answer
  • 3(x-5)² +14(x-5)-24
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!