1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SCORPION-xisa [38]
2 years ago
6

0.111111.... a rational or irrational number​

Mathematics
1 answer:
Darya [45]2 years ago
8 0
0.111111… is a rational number because it can be represented as a fraction: 1/9
It is simply a non-terminating/repeating decimal

I hope this helps :)
You might be interested in
Hey u guys are all of u guys doing good cuz of corona and all?<br> just a small question
gogolik [260]

Answer:

9.22 repeating, also I'm doing fine :) wear a mask when you go anywhere around people (remember 6 ft), wash your hands, and stay safe!!!

Step-by-step explanation:

First I turned the fraction given into a mixed fraction, so 83/9, I just did that by multiplying 9 by 9 and then add 2.

When converted to a decimal you get 9.22 repeating

6 0
3 years ago
Read 2 more answers
A car dealership had $114,000 in average monthly sales. If you made 30% of all the sales, what is your total sales? help me
Tcecarenko [31]

Answer:

I think it's $34,200

Step-by-step explanation:

$114,000 x 30% divide 100 = 34,200

6 0
3 years ago
2067 Supp Q.No. 2a Find the sum of all the natural numbers between 1 and 100 which are divisible by 5. Ans: 1050 ​
Alborosie

5

Answer:

1050

Step-by-step explanation:

Natural Numbers are positive whole numbers. They aren't negative, decimals, fractions. We can just divide 5 into 100 to find how many natural numbers go up to 100 and just add them but that is just to much.

There is a easier method.

<em>E.g</em><em>:</em><em> </em><em> </em><em>Natural</em><em> </em><em>N</em><em>umbers</em><em> </em><em>that</em><em> </em><em>are</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>a</em><em> </em><em>N</em><em>t</em><em>h</em><em> </em><em>Number</em><em>.</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>as</em><em> </em><em>adding</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>Nth</em><em> </em><em>Numbers</em><em> </em><em> </em><em>to a</em><em> </em><em>multiple</em><em> </em><em>of</em><em> </em><em>that</em><em> </em><em>Nth</em><em> </em><em>Term</em><em>.</em><em> </em><em>For</em><em> </em><em>example</em><em>,</em><em> </em><em>let</em><em> </em><em>say</em><em> </em><em>we</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>numbers</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em>.</em><em> </em><em>We</em><em> </em><em>know</em><em> </em><em>that</em><em> </em><em>4</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>because</em><em> </em><em>4</em><em>/</em><em>2</em><em>=</em><em>2</em><em>.</em><em> </em><em> </em><em>We</em><em> </em><em>can</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>Nth</em><em> </em><em>numbers</em><em> </em><em>which</em><em> </em><em>is</em><em> </em><em>2</em><em> </em><em>to</em><em> </em><em>4</em><em>.</em><em> </em><em>4</em><em>+</em><em>2</em><em>=</em><em>6</em><em>.</em><em> </em><em>And</em><em> </em><em>6</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>because</em><em> </em><em>6</em><em>/</em><em>2</em><em>=</em><em>3</em><em>.</em><em> </em><em>We</em><em> </em><em>can</em><em> </em><em>call</em><em> </em><em>this</em><em> </em><em>a</em><em> </em><em>arithmetic</em><em> </em><em>series</em><em>.</em><em> </em><em>A</em><em> </em><em>series</em><em> </em><em>which</em><em> </em><em>has</em><em> </em><em>a</em><em> </em><em>pattern</em><em> </em><em>of</em><em> </em><em>adding</em><em> </em><em>a</em><em> </em><em>common</em><em> </em><em>difference</em>

<em>Back</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>problem</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>use</em><em> </em><em>the</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>arithmetic</em><em> </em><em>series</em><em> </em><em>formula</em><em>,</em>

<em>y = x( \frac{z {}^{1}  +  {z}^{n} }{2} )</em>

<em>Where</em><em> </em><em>x</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>number</em><em> </em><em>of</em><em> </em><em>terms</em><em> </em><em>in</em><em> </em><em> </em><em>our</em><em> </em><em>sequence</em><em>.</em><em> </em><em>Z1</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>fist</em><em> </em><em>term</em><em> </em><em>of</em><em> </em><em>our</em><em> </em><em>series</em><em>.</em><em> </em><em> </em><em>ZN</em><em> </em><em>is</em><em> </em><em>our</em><em> </em><em>last</em><em> </em><em>term</em><em>.</em><em> </em><em>And</em><em> </em><em>y</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>all</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>terms</em><em> </em>

<em>The</em><em> </em><em>first</em><em> </em><em>term</em><em> </em><em>is</em><em> </em><em>5</em><em>,</em><em> </em><em>the</em><em> </em><em>numbers</em><em> </em><em>of</em><em> </em><em>terms</em><em> </em><em>being</em><em> </em><em>added</em><em> </em><em>is</em><em> </em><em>2</em><em>0</em><em> </em><em>because</em><em> </em><em>1</em><em>0</em><em>0</em><em>/</em><em>5</em><em>=</em><em>2</em><em>0</em><em>.</em><em> </em><em>The</em><em> </em><em>last</em><em> </em><em>term</em><em> </em><em>is</em><em> </em><em>1</em><em>0</em><em>0</em><em>.</em>

<em>y = 20( \frac{5 + 100}{2} )</em>

<em>y = 20( \frac{105}{2} )</em>

<em>y = 1050</em>

5 0
3 years ago
3(x+1) + 1 + 2x = 2(2x + 2) + x
WARRIOR [948]
0 = 0
The input is an identity: it is true for all values
3 0
3 years ago
System of equations with different slopes and different y-intercepts have one solution.
Pavlova-9 [17]
The answer is :
<span>A. Always


Also </span>
<span>If two equations have different slopes but equivalent y-intercepts, they will have one solution and that will be the point where the y-intercept is. If two equations have different slopes and different y-intercepts, then there will be one solution where those two lines meet. If two equations have the same slope but different y-intercepts, the lines will be parallel, and there is no possible intersection point. And if two equations have equal slopes and equal y-intercepts, these lines will have an infinite amount of solutions, because if the equations are one the same line, every single point on that line is a solution to the system. </span>
7 0
3 years ago
Read 2 more answers
Other questions:
  • WILL GIVE BRAINLIESTTTTT!!<br><br><br> What is the equation for the line?
    14·2 answers
  • A cup contains 3 blue paper clips,2 red paper clips,and 5 silver paper clips.what is the probability of not drawing a red paper
    8·1 answer
  • What is the quotient of a number and 4 is at most 5
    15·2 answers
  • A garden table and a bench cost $781 combined. The garden table costs $69 less than the bench. What is the cost of the bench?
    10·2 answers
  • Please solve this equation -3/4+(-3/8)=
    10·1 answer
  • Find the slope of the line 3x+5y=30
    7·1 answer
  • Which r-value represents the weakest correlation?<br><br> –0.75<br> –0.27<br> 0.11<br> 0.54
    7·1 answer
  • What is the domain of f for f(x)=x-3/x+2?
    7·1 answer
  • Find the common ratio of the geometric sequence 7,63,567, ...
    7·2 answers
  • Select the ordered pairs that are located 8 units away from the point (2.1).<br><br> Plssss help
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!