Answer:Choice A) All points with an x-value of 3 are located in Quadrant I.
We can show it is false through the use of a counter example. For instance, the point (3, -5) is not in quadrant 1, but rather in quadrant 4.
We would need to say "all points with x value 3 and positive y value" to ensure the point is in quadrant 1.
The quadratic term is 2x^2.
Let's break this down:
The difference: Something's gotta be subtracted
Twice a number: So 2 times a number, or n
and 3: So we gotta subtract 2n and 3
is 11: The final answer is 11
So altogether is:
2n - 3 = 11
Answer:
c. domain: {-2, 0, 2}, range: {-1, 1, 3}
Step-by-step explanation:
Given:
There are three points on the graph.
Locate the and values of the points on the graph.
The points are
Domain is the set of all possible values. Here, the values are -2, 0 and 2.
So, domain is: {-2, 0, 2}.
Range is set of all possible values. Here, the values are -1, 1 and 3.
So, range is: {-1, 1, 3}
the discriminant b^2 - 4ac when the equation is in the form of ax^2 +bx+c=0
13x^2-16x = x^2 -x
we need to get in it the standard form
subtract x^2 from each side
12x^2 -16x = -x
add x to each side
12x^2 -15x = 0
12x^2 -15x -0 =0
a=12 b=-15 c=0
b^2 -4ac
the discriminant = b^2
b^2 = (-15)2 = 225