From the figure, we immediately have
cos(θ) = 8/17
sin(θ) = 15/17
By definition of tangent,
tan(2θ) = sin(2θ)/cos(2θ)
Recall the double angle identities:
sin(2θ) = 2 sin(θ) cos(θ)
cos(2θ) = cos²(θ) - sin²(θ) = 2 cos²(θ) - 1
Then
tan(2θ) = (2 sin(θ) cos(θ)) / (2 cos²(θ) - 1)
tan(2θ) = (2 × 15/17 × 8/17) / (2 × (8/17)² - 1)
tan(2θ) = -240/161
<em>Answer:</em>
<em>Can be found below</em>
<em>Step-by-step explanation:</em>
<em>Part A:</em>
<em>So we know that the bacteria doubles every (30) minutes.</em>
<em>2000 times 2 equals 4000 (30 minutes)</em>
<em>4000 times 2 equals 8000 (1 hour)</em>
<em>Answer for Part A:</em>
<em>8000 bacteria</em>
<em>Part B:</em>
<em>Now we do this function 2000(2)^14 (30 minutes long)</em>
<em>Answer to Part B: </em>
<em>I believe the answer is 32,768,000 (Please correct me if I'm wrong) </em>
<em>Hope I could help!! Have a great day/night!</em>
<em>Any constructional messages are greatly appreciated!!</em>
1)
∠BAC = ∠NAC - ∠NAB = 144 - 68 = 76⁰
AB = 370 m
AC = 510 m
To find BC we can use cosine law.
a² = b² + c² -2bc*cos A
|BC|² = |AC|²+|AB|² - 2|AC|*|AB|*cos(∠BAC)
|BC|² = 510²+370² - 2*510*370*cos(∠76⁰) =
|BC| ≈ 553 m
2)
To find ∠ACB, we are going to use law of sine.
sin(∠BAC)/|BC| = sin(∠ACB)/|AB|
sin(76⁰)/553 m = sin(∠ACB)/370 m
sin(∠ACB)=(370*sin(76⁰))/553 =0.6492
∠ACB = 40.48⁰≈ 40⁰
3)
∠BAC = 76⁰
∠ACB = 40⁰
∠CBA = 180-(76+40) = 64⁰
Bearing C from B =360⁰- 64⁰-(180-68) = 184⁰
4)
Shortest distance from A to BC is height (h) from A to BC.
We know that area of the triangle
A= (1/2)|AB|*|AC|* sin(∠BAC) =(1/2)*370*510*sin(76⁰).
Also, area the same triangle
A= (1/2)|BC|*h = (1/2)*553*h.
So, we can write
(1/2)*370*510*sin(76⁰) =(1/2)*553*h
370*510*sin(76⁰) =553*h
h= 370*510*sin(76⁰) / 553= 331 m
h=331 m