-- It takes the brick 8.9 seconds to reach the ground.
-- At the instant of the "splat", it's falling at 89 m/s.
-- The mass doesn't matter. If not for air resistance, every object
would fall at the same rate. The answer is the same for a feather,
a rubber chicken, a brick, or a school bus.
1 astronomical unit = 149597870700m
Enrico should divide distance in meters with this number.
Answer:
Hello your question is incomplete attached below is the complete question
Answer : x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Explanation:
Given data:
mass suspended = 4 meters
mass suspended at other end = 3 meters
first we have to express the kinetic and potential energy equations
The general kinetic energy of the system can be written as
T = 
T =
also the general potential energy can be expressed as
U = 
The Lagrangian of the problem can now be setup as

next we will take the Euler-Lagrange equation for the generalized equations :
Euler-Lagrange equation = 
solving the equations simultaneously
x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Answer:
8 N
Explanation:
Using the equation F=ma (F: force/ m: mass in kg/ a: acceleration),
F = (800/1000)(10)
F = 8 N
That depends on what quantity is graphed.
It also depends on what kind of acceleration is taking place ...
continuous change of speed or continuous change of direction.
-- If the graph shows speed vs time, and the acceleration is a change
in speed, then the graph is a connected series of straight-line pieces.
Each straight piece slopes up if speed is increasing, or down if speed
is decreasing.
-- If the graph shows speed vs time, and the acceleration is a change in
direction only, then the graph is a straight horizontal line, since speed is
constant.
-- If the graph shows direction vs time, and the acceleration is a change
in speed only, then the graph is a straight horizontal line, since direction
is constant.
-- If the graph shows direction vs time, and the acceleration is a change
in direction, then the graph is a connected series of pieces of line.
Each piece may be straight if the direction is changing at a constant rate,
or curved if the direction is changing at a rate which grows or shrinks.
Each piece may slope up if the angle that defines the direction is growing,
or may slope down if the angle that defines the direction is decreasing.
-- If the graph shows distance vs time, and the acceleration is a
change in speed, then the graph is a connected series of pieces
of curves. Each piece curves up if speed is increasing, or down if
speed is decreasing.
-- If the graph shows distance vs time, and the acceleration is a change
in direction only, then the graph is a straight line sloping up, since speed
is constant.