To bring something to a stop the same force that was applied to speed it up can be used to stop it. If a greater force is used it will stop quicker.
Answer:
Speed will be equal to 1.40 m/sec
Explanation:
Mass of the rubber ball m = 5.24 kg = 0.00524 kg
Spring is compressed by 5.01 cm
So x = 5.01 cm = 0.0501 m
Spring constant k = 8.08 N/m
Frictional force f = 0.031 N
Distance moved by ball d = 15.8 cm = 0.158 m
Energy gained by spring
Energy lost due to friction
So remained energy to move the ball = 0.0101 - 0.0048 = 0.0052 J
This energy will be kinetic energy
v = 1.40 m/sec
Answer:
The charge on the third object is − 21.7nC
Explanation:
From Gauss's Law
Φ = Q/ε₀
where;
Φ is the total electric flux through the shell = − 533 N⋅m²/C
Q is the total charge Q in the shell = ?
ε₀ is the permittivity of free space = 8.85 x 10⁻¹²
From this equation; Φ = Q/ε₀
Q = Φ * ε₀ = − 533 * 8.85 x 10⁻¹²
Q = −4.7 X 10⁻⁹ C = -4.7nC
Q = q₁ + q₂ + q₃
− 4.7nC = − 14.0 nC + 31.0 nC + q₃
− 4.7nC − 17nC = q₃
− 21.7nC = q₃
Therefore, the charge on the third object is − 21.7nC
Answer:
8.79*10^6 rad/s
Explanation:
To find the frequency of the circular orbit for an electron you use the following expression, for the radius of the trajectory of an electron, that travels trough a constant magnetic field:
(1)
r: radius of the trajectory
m: mass of the electron = 9.1*10^-31 kg
v: speed of the electron = 1.0*10^6 m/s
q: charge of the electron = 1.6*10^-19 C
B: magnitude of the magnetic field = 5.0*10^-5 T
You use the fact that the angular frequency in a circular motion is given by:
Then, you solve the equation (1) in order to obtain v/r:
Finally, you replace the values of the parameters:
hence, the angular frequency is 8.79*10^6 rad/s
The frequency is: