The charge of the copper nucleus is 29 times the charge of one proton:

the charge of the electron is

and their separation is

The magnitude of the electrostatic force between them is given by:

where

is the Coulomb's constant. If we substitute the numbers, we find (we can ignore the negative sign of the electron charge, since we are interested only in the magnitude of the force)
the answer is c because it has the most volts
a
Answer:
Explanation:
Mass of nails is 0.25kg
Mass of hammer 5.2kg
Speed of hammer is =52m/s
Then, Ben kinetic energy is given as
K.E= ½mv²
K.E= ½×5.2×52²
K.E= 7030.4J
Given that, two-fifth of kinetic energy is converted to internal energy
Internal energy (I.E) = 2/5 × K.E
Internal energy (I.E) = 2/5 × 7030.4
I.E=2812.16J.
Energy increase is total Kinetic energy - the internal energy
∆Et= K.E-I.E
∆Et= 7030.4 - 2812.16
∆Et= 4218.24J
Answer
Wavelength= 30*20^8/30=10^7m
Explanation:
Velocity = frequency *wavelength
We're frequency=30HZ
Velocity of light= 3*10^8m/s
Wavelength= 30*20^8/30=10^7m
Explanation:
1) The equivalent resistance of two resistors in parallel is given by:

so in our problem we have

and the equivalent resistance is

2) If we have a battery of 12 V connected to the circuit, the current in the circuit will be given by Ohm's law, therefore: