1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lelechka [254]
2 years ago
5

Shane has nine notes in his wallet, three are $50 and the rest are $20 notes. Write the ratio of $50 notes to $20 dollar notes.

Mathematics
1 answer:
insens350 [35]2 years ago
6 0

Answer:

50x20=1000

Step-by-step explanation:

You might be interested in
One of the following expressions is equivalent to<br> 8x^2-10x+3. Which expression is it?
DanielleElmas [232]

Answer:

D)

Step-by-step explanation:

6 0
3 years ago
If x = -4, then - (-x) = 4.<br> O True<br> O False<br> Quick Nav
Veronika [31]

Answer:

Hey there!

x=-4

-(-x)=-(-(-4))

-(4)

-4

FALSE

8 0
3 years ago
Where did we get one?
77julia77 [94]

Answer:

The -1 came from factoring.

The equation is multiplied by 8 because 8 could be pulled from 16x-8.

16 can be divided by 8 2 times and 8 can only divided by 8 once.

so factoring it makes the equation 8(2x-1)

5 0
2 years ago
How many cubes that measure 2 inches by 2 inches by 2 inches would fit inside a cube that measures 10 inches by 10 inches by 10
11111nata11111 [884]
25, because a cube that is 10x10 would have an area of 100. and the cubes that are 2x2 would have an area of 4. so you take 100 and divide it by 4. answer is 25.
5 0
2 years ago
Help me on this please
zalisa [80]

Answer:

1. (x, y) → (x + 3, y - 2)

Vertices of the image

a) (-2, - 3)

b) (-2, 3)

c) (2, 2)

2. (x, y) → (x - 3, y + 5)

Vertices of the image

a) (-3, 2)

b) (0, 2)

c) (0, 4)

d) (2, 4)

3. (x, y) → (x + 4, y)

Vertices of the image

a) (-1, -2)

b) (1, -2)

c) (3, -2)

4. (x, y) → (x + 6, y + 1)

Vertices of the image

a) (1, -1)

b) (1, -2)

c) (2, -2)

d) (2, -4)

e) (3, -1)

f) (3, -3)

g) (4, -3)

h) (1, -4)

5. (x, y) → (x, y - 4)

Vertices of the image

a) (0, -2)

b) (0, -3)

c) (2, -2)

d) (2, -4)

6. (x, y) → (x - 1, y + 4)

Vertices of the image

a) (-5, 3)

b) (-5, -1)

c) (-3, 0)

d) (-3, -1)

Explanation:

To identify each <u><em>IMAGE</em></u> you should perform the following steps:

  • List the vertex points of the preimage (the original figure) as ordered pairs.
  • Apply the transformation rule to every point of the preimage
  • List the image of each vertex after applying each transformation, also as ordered pairs.

<u>1. (x, y) → (x + 3, y - 2)</u>

The rule means that every point of the preimage is translated three units to the right and 2 units down.

Vertices of the preimage      Vertices of the image

a) (-5,2)                                   (-5 + 3, -1 - 2) = (-2, - 3)

b) (-5, 5)                                  (-5 + 3, 5 - 2) = (-2, 3)

c) (-1, 4)                                   (-1 + 3, 4 - 2) = (2, 2)

<u>2. (x,y) → (x - 3, y + 5)</u>

The rule means that every point of the preimage is translated three units to the left and five units down.

Vertices of the preimage      Vertices of the image

a) (0, -3)                                   (0 - 3, -3 + 5) = (-3, 2)

b) (3, -3)                                   (3 - 3, -3  + 5) = (0, 2)

c) (3, -1)                                    (3 - 3, -1 + 5) = (0, 4)

d) (5, -1)                                    (5 - 3, -1 + 5) = (2, 4)

<u>3. (x, y) → (x + 4, y)</u>

The rule represents a translation 4 units to the right.

Vertices of the preimage   Vertices of the image

a) (-5, -2)                               (-5 + 4, -2) = (-1, -2)

b) (-3, -5)                               (-3 + 4, -2) = (1, -2)

c) (-1, -2)                                (-1 + 4, -2) = (3, -2)

<u>4. (x, y) → (x + 6, y + 1)</u>

Vertices of the preimage      Vertices of the image

a) (-5, -2)                                  (-5 + 6, -2 + 1) = (1, -1)

b) (-5, -3)                                  (-5 + 6, -3 + 1) = (1, -2)

c) (-4, -3)                                   (-4 + 6, -3 + 1) = (2, -2)

d) (-4, -5)                                  (-4 + 6, -5 + 1) = (2, -4)

e) (-3, -2)                                  (-3 + 6, -2 + 1) = (3, -1)

f) (-3, -4)                                   (-3 + 6, -4 + 1) = (3, -3)

g) (-2, -4)                                  (-2 + 6, -4 + 1) = (4, -3)

h) (-2, -5)                                  (-2 + 3, -5 + 1) = (1, -4)

<u>5. (x, y) → (x, y - 4)</u>

This is a translation four units down

Vertices of the preimage      Vertices of the image

a) (0, 2)                                    (0, 2 - 4) = (0, -2)

b) (0,1)                                      (0, 1 - 4) = (0, -3)

c) (2, 2)                                     (2, 2 - 4) = (2, -2)

d) (2,0)                                     (2, 0 - 4) = (2, -4)

<u>6. (x, y) → (x - 1, y + 4)</u>

This is a translation one unit to the left and four units up.

Vertices of the pre-image     Vertices of the image

a) (-4, -1)                                   (-4 - 1, -1 + 4) = (-5, 3)

b) (-4 - 5)                                  (-4 - 1, -5 + 4) = (-5, -1)

c) (-2, -4)                                  (- 2 - 1, -4 + 4) = (-3, 0)

d) (-2, -5)                                 (-2 - 1, -5 + 4) = (-3, -1)

8 0
3 years ago
Other questions:
  • Which equation has solution x=-3?<br> 2x - 7= -1<br> 3x + 8 = 1<br> x+8 = 10<br> 17- (2x - 6) = -6
    12·1 answer
  • Someone please help me!
    9·1 answer
  • Write the fraction as a percent.<br> 2/3
    14·2 answers
  • Helppppppppppp please and expalin if you can
    5·1 answer
  • A rectangle measures 13 cm by 5 cm what is its area
    14·1 answer
  • You are buying fabric to make a patio umbrella in the shape of a regular hexagon, as shown. The red fabric costs $3.75 per squar
    14·1 answer
  • If 5 chips are chosen without replacement what is the probability that none is white
    8·1 answer
  • The sum of two numbers is 45 and the difference is 3. What are the numbers?​
    8·1 answer
  • Solve for x. -- 2x + 6 = 30 - 6x -6 6 -8 8​
    15·2 answers
  • (1/4)(5/6)^x=75/432. Solve the Equation
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!