Answer:
6.3445×10⁻¹⁶ m
Explanation:
E = Accelerating voltage = 2.47×10³ V
m = Mass of electron
Distance electron travels = 33.5 cm = 0.335 cm

Deflection by Earth's Gravity

Now, Time = Distance/Velocity

∴ Magnitude of the deflection on the screen caused by the Earth's gravitational field is 6.3445×10⁻¹⁶ m
Answer:
4.42 x 10⁷ W/m²
Explanation:
A = energy absorbed = 500 J
η = efficiency = 0.90
E = Total energy
Total energy is given as
E = A/η
E = 500/0.90
E = 555.55 J
t = time = 4.00 s
Power of the beam is given as
P = E /t
P = 555.55/4.00
P = 138.88 Watt
d = diameter of the circular spot = 2.00 mm = 2 x 10⁻³ m
Area of the circular spot is given as
A = (0.25) πd²
A = (0.25) (3.14) (2 x 10⁻³)²
A = 3.14 x 10⁻⁶ m²
Intensity of the beam is given as
I = P /A
I = 138.88 / (3.14 x 10⁻⁶)
I = 4.42 x 10⁷ W/m²
Answer:
Angular velocity is same as frequency of oscillation in this case.
ω =
x ![[\frac{L^{2}}{mK}]^{3/14}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BL%5E%7B2%7D%7D%7BmK%7D%5D%5E%7B3%2F14%7D)
Explanation:
- write the equation F(r) = -K
with angular momentum <em>L</em>
- Get the necessary centripetal acceleration with radius r₀ and make r₀ the subject.
- Write the energy of the orbit in relative to r = 0, and solve for "E".
- Find the second derivative of effective potential to calculate the frequency of small radial oscillations. This is the effective spring constant.
- Solve for effective potential
- ω =
x ![[\frac{L^{2}}{mK}]^{3/14}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BL%5E%7B2%7D%7D%7BmK%7D%5D%5E%7B3%2F14%7D)
A. Genus and B. Species are also major levels of classification.
Answer:
Maximum distance of image from mirror is equal to focal length of the mirror
Explanation:
As we know by the equation of mirror we have

here we know for convex mirror
object position is always negative as it will be placed behind the mirror always
while the focal length of the convex mirror is always taken positive
So here we have


so here maximum value of image distance is equal to focal length of the mirror