Work needed = 23,520 J
<h3>
Further explanation
</h3>
Given
height = 12 m
mass = 200 kg
Required
work needed by the crane
Solution
Work is the transfer of energy caused by the force acting on a moving object
Work is the product of force with the displacement of objects.
Can be formulated
W = F x d
W = Work, J, Nm
F = Force, N
d = distance, m
F = m x g
Input the value :
W = mgd
W = 200 kg x 9.8 m/s²x12 m
W = 23520 J
Answer:
-0.045 N, they will attract each other
Explanation:
The strength of the electrostatic force exerted on a charge is given by

where
q is the magnitude of the charge
E is the electric field magnitude
In this problem,

(negative because inward)
So the strength of the electrostatic force is

Moreover, the charge will be attracted towards the source of the electric field. In fact, the text says that the electric field points inward: this means that the source charge is negative, so the other charge (which is positive) is attracted towards it.
If it's not moving at all at the beginning of the 10 seconds, then it falls 490 meters straight down in 10 seconds.
(Note: This is true of all objects on Earth . . . rubber balls, feathers, grains of sand, school buses, battle ships . . . everything. As long as air doesn't hold them back. Anything falling from rest falls 490 meters in the first 10 seconds.)
Speed= distance/time
Speed= 150000m/7200s=20.83m/s(cor.to.2d.p.)
Answer:
C. 
Explanation:
The acceleration of an object can be found using the equation:

where
v is the final velocity
u is the initial velocity
t is the time it takes for the velocity to change from u to v
In this problem:
u = 30 m/s is the initial velocity of Angelica
v = 84 m/s is the final velocity
t is the time
Substituting into the equation, we find the acceleration:
