1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nirvana33 [79]
3 years ago
12

Find the sum S below:

Mathematics
1 answer:
goldfiish [28.3K]3 years ago
3 0

Answer:

\rm\displaystyle \sum _{n = 1} ^{ \infty }  \frac{2}{(2n -1 )(2n + 1)}  \approx   \boxed{\frac{1}{2}}

Step-by-step explanation:

we want to figure out the <em>Sum</em> of the following infinite series:

\rm\displaystyle S = \frac{2}{1 \cdot 3} + \frac{2}{3 \cdot 5} + \frac{2}{5 \cdot 7} + ... + \frac{2}{(2n - 1)(2n + 1)}

we're given the nth term of the series so the infinite sum would be

\displaystyle \sum _{n = 1} ^{ \infty }  \frac{2}{(2n -1 )(2n + 1)}

to simplify the sum it, we need our calculas skills. recall that,

\displaystyle \sum _{i = 1} ^{ \infty }   a_{i} =  \lim _{x \to  \infty }\sum _{i = 1} ^{ n }   a_{i}

Thus,

\displaystyle \sum _{n = 1} ^{ \infty }  \frac{2}{(2n -1 )(2n + 1)}  =  \lim _{x \to \infty } \sum _{n = 1} ^{ k}  \frac{2}{(2n -1 )(2n + 1)}

<u>computing</u><u> the</u><u> </u><u>limit</u><u>:</u>

\displaystyle   \lim _{n \to \infty }   \frac{2}{ \dfrac{(2n -1 )(2n + 1)}{ {n}^{2} }}

simplify complex fraction:

\displaystyle   \lim _{n \to \infty }   \frac{ {2n}^{2} }{ {(2n -1 )(2n + 1)}}

simplify denominator:

\displaystyle   \lim _{n \to \infty }   \frac{ {2n}^{2} }{ { 4n}^{2}  - 1}

factor out n²:

\displaystyle   \lim _{n \to \infty }   \frac{ {2n}^{2} }{  {n}^{2} \left( 4  -  \frac{1}{ {n}^{2}} \right) }

reduce fraction:

\displaystyle   \lim _{n \to \infty }   \frac{ 2 }{    4  -  \dfrac{1}{ {n}^{2}} }

as n approaches to infinity 1/n² approaches to 0 therefore:

\displaystyle   \frac{ 2 }{    4   }

reduce fraction:

\displaystyle    \frac{1}{2}

hence,

\displaystyle \sum _{n = 1} ^{ \infty }  \frac{2}{(2n -1 )(2n + 1)}  \approx  \frac{1}{2}

You might be interested in
Lance the alien is 5 feet tall. His shadow is 8 feet lopg.
Stells [14]

Answer:

20 ft

Step-by-step explanation:

The 2 triangles are similar, thus the ratios of corresponding sides are equal.

let h be the height of the tree, then

\frac{h}{5} = \frac{32}{8} = 4 ( multiply both sides by 5 )

h = 20

The height of the tree is 20 ft

3 0
3 years ago
I need help right now plzz
Digiron [165]

Answer:

The answer is A

6 0
3 years ago
Which describes the equation: y=4x-5
Setler [38]

Answer:

hello

Step-by-step explanation:

4 0
3 years ago
Solve the simultaneous equations<br> y=2-5x<br> y = x² – 2x – 8
Aloiza [94]

Answer:

Step-by-step explanation:

sub equation 1 into 2

2-5x=x²-2x-8

0=x²-2x+5x-8-2

0=x²+3x-10

0=(x-2)(x+5)

x=2 or x=-5

sub x into equation 1

y=2-5(2)                            or        y=2-5(-5)

y=-8                                              y=27

8 0
1 year ago
Find g(x), where g(x) is the translation 7 units up of f(x)=x.
hammer [34]
G(x)=x+7 is the translation
8 0
3 years ago
Other questions:
  • 2. There are some benches in a classroom. If 4 students sit on each bench then 3 benches
    9·1 answer
  • 1
    7·1 answer
  • Is the sequence arithmetic geometric or neither?
    11·1 answer
  • Can you please help with this question
    13·2 answers
  • Simplyfy 8x^4y^5 times 10xy^3
    12·2 answers
  • Clouds are formed when millions of drops of water become suspended in the air. Which of the following is a step in the process o
    9·1 answer
  • Identify the polynomial.
    8·1 answer
  • What are the slopes?
    9·1 answer
  • What’s 40% of 250???
    8·1 answer
  • Im so lazy to do homework and I can’t get this correctly
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!