The nth taylor polynomial for the given function is
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Given:
f(x) = ln(x)
n = 4
c = 3
nth Taylor polynomial for the function, centered at c
The Taylor series for f(x) = ln x centered at 5 is:

Since, c = 5 so,

Now
f(5) = ln 5
f'(x) = 1/x ⇒ f'(5) = 1/5
f''(x) = -1/x² ⇒ f''(5) = -1/5² = -1/25
f'''(x) = 2/x³ ⇒ f'''(5) = 2/5³ = 2/125
f''''(x) = -6/x⁴ ⇒ f (5) = -6/5⁴ = -6/625
So Taylor polynomial for n = 4 is:
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Hence,
The nth taylor polynomial for the given function is
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Find out more information about nth taylor polynomial here
brainly.com/question/28196765
#SPJ4
Answer:
60
Step-by-step explanation:
50+50+50+50+100= 300
divide by 5 students
300/5 = 60
The discount rate is 60%. Hope this helps.
(x-h)^2+(y-k)^2=r^2
r=radius
(x-3)^2+(y+4)^2=14
(x-3)^2+(y+4)^2=(√14)^2
answer is 2nd option
r=√14
Answer:
I think it should be A, D, E, G
Step-by-step explanation: