Answer:
y = 1/2
Step-by-step explanation:
Y+3/5 = 1 1/10
Subtract 3/5 from both sides.
y = 1/2
$ 9802.9and it said the answer had to be 20 characters long so i wrote this
Answer:
Since every 30 days he wil have both lessons on the same day , and he already had both lessons on the last day of the previous month, that means that the day 30 the current month he wil have both lessons on the same day (It may be the last day if the month has 30 days or it may not be the last day if the month has 31 days)
Step-by-step explanation:
Lets find the least common factor of 5 and 6
Multiples of 5
5 10 15 20 35 30 35 40......
Multiples of 6
6 12 18 24 30 36
LCF of 5 and 6 = 30
Every 30 days he wil have both lessons on the same day
Answer:
Radius of convergence of power series is 
Step-by-step explanation:
Given that:
n!! = 1⋅3⋅5⋅⋅⋅⋅(n−2)⋅n n is odd
n!! = 2⋅4⋅6⋅⋅⋅⋅(n−2)⋅n n is even
(-1)!! = 0!! = 1
We have to find the radius of convergence of power series:
![\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B2%5E%7Bn%7D%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%288x%2B6%29%5E%7Bn%7D%5C%5C%5C%5C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B2%5E%7Bn%7D%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D2%5E%7Bn%7D%284x%2B3%29%5E%7Bn%7D%5C%5C%5C%5C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%28x%2B%5Cfrac%7B3%7D%7B4%7D%29%5E%7Bn%7D%5C%5C)
Power series centered at x = a is:

![\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}](8x+6)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}n!(3n+3)!(2n)!!}{2^{n}[(n+9)!]^{3}(4n+3)!!}]2^{n}(4x+3)^{n}\\\\\sum_{n=1}^{\infty}[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}](x+\frac{3}{4})^{n}\\](https://tex.z-dn.net/?f=%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B2%5E%7Bn%7D%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%288x%2B6%29%5E%7Bn%7D%5C%5C%5C%5C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B2%5E%7Bn%7D%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D2%5E%7Bn%7D%284x%2B3%29%5E%7Bn%7D%5C%5C%5C%5C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7B8%5E%7Bn%7D4%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%28x%2B%5Cfrac%7B3%7D%7B4%7D%29%5E%7Bn%7D%5C%5C)
![a_{n}=[\frac{8^{n}4^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}n!(3(n+1)+3)!(2(n+1))!!}{[(n+1+9)!]^{3}(4(n+1)+3)!!}]\\\\a_{n+1}=[\frac{8^{n+1}4^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]](https://tex.z-dn.net/?f=a_%7Bn%7D%3D%5B%5Cfrac%7B8%5E%7Bn%7D4%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%5C%5C%5C%5Ca_%7Bn%2B1%7D%3D%5B%5Cfrac%7B8%5E%7Bn%2B1%7D4%5E%7Bn%2B1%7Dn%21%283%28n%2B1%29%2B3%29%21%282%28n%2B1%29%29%21%21%7D%7B%5B%28n%2B1%2B9%29%21%5D%5E%7B3%7D%284%28n%2B1%29%2B3%29%21%21%7D%5D%5C%5C%5C%5Ca_%7Bn%2B1%7D%3D%5B%5Cfrac%7B8%5E%7Bn%2B1%7D4%5E%7Bn%2B1%7D%28n%2B1%29%21%283n%2B6%29%21%282n%2B2%29%21%21%7D%7B%5B%28n%2B10%29%21%5D%5E%7B3%7D%284n%2B7%29%21%21%7D%5D)
Applying the ratio test:
![\frac{a_{n}}{a_{n+1}}=\frac{[\frac{32^{n}n!(3n+3)!(2n)!!}{[(n+9)!]^{3}(4n+3)!!}]}{[\frac{32^{n+1}(n+1)!(3n+6)!(2n+2)!!}{[(n+10)!]^{3}(4n+7)!!}]}](https://tex.z-dn.net/?f=%5Cfrac%7Ba_%7Bn%7D%7D%7Ba_%7Bn%2B1%7D%7D%3D%5Cfrac%7B%5B%5Cfrac%7B32%5E%7Bn%7Dn%21%283n%2B3%29%21%282n%29%21%21%7D%7B%5B%28n%2B9%29%21%5D%5E%7B3%7D%284n%2B3%29%21%21%7D%5D%7D%7B%5B%5Cfrac%7B32%5E%7Bn%2B1%7D%28n%2B1%29%21%283n%2B6%29%21%282n%2B2%29%21%21%7D%7B%5B%28n%2B10%29%21%5D%5E%7B3%7D%284n%2B7%29%21%21%7D%5D%7D)

Applying n → ∞

The numerator as well denominator of
are polynomials of fifth degree with leading coefficients:
