The right answer is Option A.
Step-by-step explanation:
Given,
Amount in Jason's account = $300
Bills paid = 
Remaining balance after bills = -$50
Let,
x be the amount of bills.
Amount in account - Bills paid*Amount of bills = Remaining balance

The equation
can be used to find x.
The right answer is Option A.
Keywords: equation, subtraction
Learn more about subtraction at:
#LearnwithBrainly
Answer:
We need a sample size of least 119
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error is:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
Sample size needed
At least n, in which n is found when 
We don't know the proportion, so we use
, which is when we would need the largest sample size.






Rounding up
We need a sample size of least 119
The answer are B, D and F.
If you solve for x for B, D and F, you'll get (1/2,5)
Answer:
1/6
Step-by-step explanation:
there are 6 faces on a dice so there's a 1 in 6 chance that you would roll a 3 on your second go there is still only a 1 out of 6 chance of getting a 5 because there is still 6 numbers you could roll on.
hope this helped
Answer:
Step-by-step explanation:
A system of linear equations is one which may be written in the form
a11x1 + a12x2 + · · · + a1nxn = b1 (1)
a21x1 + a22x2 + · · · + a2nxn = b2 (2)
.
am1x1 + am2x2 + · · · + amnxn = bm (m)
Here, all of the coefficients aij and all of the right hand sides bi are assumed to be known constants. All of the
xi
’s are assumed to be unknowns, that we are to solve for. Note that every left hand side is a sum of terms of
the form constant × x
Solving Linear Systems of Equations
We now introduce, by way of several examples, the systematic procedure for solving systems of linear
equations.
Here is a system of three equations in three unknowns.
x1+ x2 + x3 = 4 (1)
x1+ 2x2 + 3x3 = 9 (2)
2x1+ 3x2 + x3 = 7 (3)
We can reduce the system down to two equations in two unknowns by using the first equation to solve for x1
in terms of x2 and x3
x1 = 4 − x2 − x3 (1’)
1
and substituting this solution into the remaining two equations
(2) (4 − x2 − x3) + 2x2+3x3 = 9 =⇒ x2+2x3 = 5
(3) 2(4 − x2 − x3) + 3x2+ x3 = 7 =⇒ x2− x3 = −1