Answer:
The answer to your question is V2 = 1.82 l
Explanation:
Data
Volume 1 = 77 l
Pressure 1 = 18 mmHg
Volume 2 = ?
Pressure 2 = 760 mmHg
Process
Use Boyle's law to solve this problem
P1V1 = P2V2
-Solve for V2
V2 = P1V1/P2
-Substitution
V2 = (18 x 77) / 760
-Simplification
V2 = 1386 / 760
-Result
V2 = 1.82 l
The number of grams of radon 222 did it have 15.2 ago was 49.6 grams( answer C)
<u>calculation</u>
- calculate the number of half life it has covered from 15.2 days to 3.8 days
that is divide 15.2/ 3.8 = 4 half life
- half life is time taken for a radio activity of a specified isotope to fall to half its original mass
therefore 3.8 days ago it was 3.1 x2 = 6.2 grams
7.6 days ago it was 6.2 x2 = 12.4 grams
11.4 days ago it was 12.4 x2= 24.8 grams
15.2 days ago it was 24.8 x2=49.6 grams
Answer: Its A or D
wish i had an actual answer sorry..
Answer:
![K_a=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BHCO_3%5E-%5D%7D%7B%5BH_2CO_3%5D%7D)
Explanation:
Several rules should be followed to write any equilibrium expression properly. In the context of this problem, we're dealing with an aqueous equilibrium:
- an equilibrium constant is, first of all, a fraction;
- in the numerator of the fraction, we have a product of the concentrations of our products (right-hand side of the equation);
- in the denominator of the fraction, we have a product of the concentrations of our reactants (left-hand side o the equation);
- each concentration should be raised to the power of the coefficient in the balanced chemical equation;
- only aqueous species and gases are included in the equilibrium constant, solids and liquids are omitted.
Following the guidelines, we will omit liquid water and we will include all the other species in the constant. Each coefficient in the balanced equation is '1', so no powers required. Multiply the concentrations of the two products and divide by the concentration of carbonic acid:
![K_a=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BHCO_3%5E-%5D%7D%7B%5BH_2CO_3%5D%7D)
The mass number of this particular element is 37
An element with 17 protons will ALWAYS be chlorine.
The mass number is found by adding the element’s protons and neutrons.
protons+neutrons=mass number
Here is the math if needed,
17+20=37
Therefore the mass number is 37
I hope this helped!