Answer:
C
Explanation:
This experiment by Rutherford involved the firing of alpha particles at gold foils. It is also. called the gold foil experiment.
He fired these alpha particles at different points. He noticed that at some points, there were deflections, while at some other points, there were no deflections. It is necessary to state that these alpha particles are positively charged. For there to be a deflection, there must have been a kind of repulsion between the gold foil and the alpha particles.
From the basic physics of like repels like, he knew for sure that there must be dense positive core in the atom that is causing the deflection of the alpha particles. This enabled him to come up with the theory that the atom contained a small dense positive core called the nucleus
Answer:
0.0613 L
Explanation:
Given data
- Initial pressure (P₁): 1.00 atm
- Initial volume (V₁): 1.84 L
- Final pressure (P₂): 30.0 atm
Since we are dealing with an ideal gas, we can calculate the final volume using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁ / P₂
V₂ = 1.00 atm × 1.84 L / 30.0 atm
V₂ = 0.0613 L
Answer:
The answer is true.
Explanation:
Hello! Let's solve this!
The answer is true.
When a crust undergoes great tension, a crack opens and the oceanic crust begins to form. As the crack enlarges, the continent is splitting. Thus an oceanic crust forms. So the oceanic crust is younger than the earth's crust.
Answer:
A
Explanation:
Oceanic crust is thinner and more likely to sink