Answer:
Put the two solid spheres on an inclined plane
. Use a meter-stick to hold the spheres on the plane. Release the two spheres at the same time and let down roll down. Observe the two spheres as they roll down and repeat the steps. The hollow sphere will roll last while the solid sphere will roll first. The hollow sphere has more rotational inertia than the solid sphere. This is because the mass of the hollow sphere is distributed farther from its center of gravity.
Explanation:
The description of the experiment for the two spheres is given below:
1. Put the two solid spheres on an inclined plane
.
2. Use a meter-stick to hold the spheres on the plane.
3. Release the two spheres at the same time and let down roll down.
4. Observe the two spheres as they roll down and repeat the steps.
5. The hollow sphere will roll last while the solid sphere will roll first. The hollow sphere has more rotational inertia than the solid sphere. This is because the mass of the hollow sphere is distributed farther from its center of gravity.
The planet of an item will remain constant across the planet, but if you give it more mass, the gravitational force increases while the acceleration due to gravity remains constant.
<h3 /><h3>What is the difference between mass and weight?</h3>
The mass of the body is defined as the amount of matter a body has. It is denoted by m and its unit is kg. Mass is the quantity on which a lot of physical quantity depends.
Weight is defined as the amount of force an object exerts on the surface. It is given as the product of mass and the gravitational pull.
Mass is an independent quantity it never depends on the other. While weight is a dependent quantity that depends upon the gravitational pull.
The value of gravitational pull is different in the different parts of the universe. For example, on the earth, the value of gravitational acceleration is 9.81 m/sec².While on the moon it is g/6.
Weight is change according to the place or surrounding while the mass of the body is constant everywhere.
The planet of an item will remain constant across the cosmos, but if you give it more mass, the gravitational force increases while the acceleration of gravity remains constant.
If a planet's gravity weakens, the weight of that planet will likewise be altered. With an increase in mass, weight also rises.
Hence, the gravitational force increases while the acceleration due to gravity remains constant for the given case.
To learn more about the mass refer to the link;
brainly.com/question/19694949
#SPJ1
Answer:
4452.5 J.
Explanation:
The diver have both kinetic and potential energy.
Ek = 1/2mv² ................. Equation 1
Where Ek = Kinetic Energy of the diver, m = mass of the diver, v = velocity of the diver.
Given: m = 65 kg, v = 6.4 m/s.
Substitute into equation 1
Ek = 1/2(65)(6.4²)
Ek = 1331.2 J.
Also,
Ep = mgh ............................ Equation 2
Where Ep = Potential energy of the diver when its above the water, h = height of the diver above the water, g = acceleration due to gravity.
Given: m = 65 kg, h = 4.9 m, g = 9.8 m/s²
Substitute into equation 2.
Ep = 65(4.9)(9.8)
Ep = 3121.3 J.
Note: When she hits the water, the potential energy is converted to kinetic energy.
E = Ek+Ep
Where E = Kinetic energy of the diver when she hits the water.
E = 1331.2+3121.3
E = 4452.5 J.
Therefore, the magnitude of magnetic field at a distance 1.10cm from the origin is 27.3mT
<u>Explanation:</u>
Given;
Number of turns, N = 1000
Inner radius, r₁ = 1cm
Outer radius, r₂ = 2cm
Current, I = 1.5A
Magnetic field strength, B = ?
The magnetic field inside a tightly wound toroid is given by B = μ₀ NI / 2πr
where,
a < r < b and a and b are the inner and outer radii of the toroid.
The magnetic field of toroid is

Substituting the values in the formula:


Therefore, the magnitude of magnetic field at a distance 1.10cm from the origin is 27.3mT
Answer:
the actual answer is C i did it on usatestprep
Explanation: