Before the asteroid is threw, the total momentum is zero,
since neither Superman nor the asteroid are moving.
Conservation of momentum commands the total momentum after the astronaut is threw
must be zero too. This means that Superman's backward momentum afterward throwing
the asteroid is equivalent to the asteroid forwards momentum, in size.
Momentum is mass times velocity. We know the mass of the asteroid is 1000M and
its velocity is 850 m/s, so its momentum is
(1000M)(850 m/s) = 850,000M m/s.
So to get the answer: dividing by
Superman's mass, M, gives his recoil velocity o 850,000 m/s.
The Impulse delivered to the baseball is 89 kgm/s.
To solve the problem above, we use the formula of impulse.
⇒ Formula:
- I = m(v-u)................. Equation 1
Where:
- I = Impulse delivered to the baseball
- m = mass of the baseball
- v = Final velocity of the baseball
- u = initial speed of the baseball
From the question,
⇒ Given:
- m = 0.8 kg
- u = 67 m/s
- v = -44 m/s
⇒ Substitute these values into equation 1
- I = 0.8(-44-67)
- I = 0.8(-111)
- I = -88.8
- I ≈ -89 kgm/s
Note: The negative tells that the impulse is in the same direction as the final velocity and therefore can be ignored.
Hence, The Impulse delivered to the baseball is 89 kgm/s.
Learn more about impulse here: brainly.com/question/7973509
The answer is in the attachment
<span>...........................................</span>