<u>Answer:</u> The new pressure will be 101.46 kPa.
<u>Explanation:</u>
To calculate the new pressure, we use the equation given by Gay-Lussac Law. This law states that pressure is directly proportional to the temperature of the gas at constant volume.
The equation given by this law is:

where,
are initial pressure and temperature.
are final pressure and temperature.
We are given:
By using conversion factor: 

Putting values in above equation, we get:

Hence, the new pressure will be 101.46 kPa.
<h3>Given:</h3>
M₁ = 2.0 mol/L
V₁ = 1 L
M₂ = 0.1 mol/L
<h3>Required:</h3>
V₂
<h3>Solution:</h3>
M₁V₁ = M₂V₂
V₂ = M₁V₁ / M₂
V₂ = (2.0 mol/L)(1 L) / (0.1 L)
<u>V₂ = 20 L</u>
Therefore, the volume of the new solution will be 20 L.
#ILoveChemistry
#ILoveYouShaina
Answer:
B. They are dimensionless ratios of the actual concentration or pressure divided by standard state concentration, which is 1 M for solutions and 1 bar for gases.
Explanation:
Activity of a substance is defined as the ratio of an effective concentration or an effective pressure to a standard state pressure or a standard state pressure. It is usually a unit less ratio.
Concentrations in an equilibrium constant are really dimensionless ratios of actual concentrations divided by standard state concentrations. Since standard states are 1 M for solutes, 1 bar for gases, and pure substances for solids and liquids, these are the units to be used.
Hence, activity is a fudge factor to ideal solutions that correct the true concentration. Activity of a gas and solute concentration is a ratio with no unit.
Answer:
I'm almost positive its d
Explanation:
hope this helps <3
When finding the moles in a compound you have to know the grams. In this case, 25.2 grams are given for KMnO4. To find the moles you would divide the amount of grams by the molar mass of KMnO4. The molar mass of KmnO4 is 158.034. You you would now divide 25.2 by 158.034 which is 0.15946 moles. Depending on how many decimal places the questions asks for is dependent on you. I just went with 5 significant figures.