Answer:
Water will boil at
.
Explanation:
According to clausius-clapeyron equation for liquid-vapor equilibrium:
![ln(\frac{P_{2}}{P_{1}})=\frac{-\Delta H_{vap}^{0}}{R}[\frac{1}{T_{2}}-\frac{1}{T_{1}}]](https://tex.z-dn.net/?f=ln%28%5Cfrac%7BP_%7B2%7D%7D%7BP_%7B1%7D%7D%29%3D%5Cfrac%7B-%5CDelta%20H_%7Bvap%7D%5E%7B0%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_%7B2%7D%7D-%5Cfrac%7B1%7D%7BT_%7B1%7D%7D%5D)
where,
and
are vapor pressures of liquid at
(in kelvin) and
(in kelvin) temperatures respectively.
Here,
= 760.0 mm Hg,
= 373 K,
= 314.0 mm Hg
Plug-in all the given values in the above equation:
![ln(\frac{314.0}{760.0})=\frac{-40.7\times 10^{3}\frac{J}{mol}}{8.314\frac{J}{mol.K}}\times [\frac{1}{T_{2}}-\frac{1}{373K}]](https://tex.z-dn.net/?f=ln%28%5Cfrac%7B314.0%7D%7B760.0%7D%29%3D%5Cfrac%7B-40.7%5Ctimes%2010%5E%7B3%7D%5Cfrac%7BJ%7D%7Bmol%7D%7D%7B8.314%5Cfrac%7BJ%7D%7Bmol.K%7D%7D%5Ctimes%20%5B%5Cfrac%7B1%7D%7BT_%7B2%7D%7D-%5Cfrac%7B1%7D%7B373K%7D%5D)
or, 
So, 
Hence, at base camp, water will boil at 
Answer:
0.229 cm³.
Explanation:
The following data were obtained from the question:
Volume (in in³) = 0.014 in³
Volume (in cm³) =?
1 in = 2.54 cm
Next, we shall determine a conversion scale to convert from in³ to cm³. This can be obtained as follow:
1 in = 2.54 cm
Therefore,
1 in³ = 2.54³ cm³
1 in³ = 16.387 cm³
Finally, we shall convert 0.014 in³ to cm³. This can be obtained as follow:
1 in³ = 16.387 cm³
Therefore,
0.014 in³ = 0.014 in³ × 16.387 cm³ / 1 in³
0.014 in³ = 0.229 cm³
Thus, 0.014 in³ is equivalent to 0.229 cm³.