We know that 2/3 of all students watch TV shows on their computers.
And 234 students were in that survey.
2 / 3 * 234 = 156
Answer: 156 students watch shows on their computer.
Answer:
-21
Step-by-step explanation:
I assume this is a 2 by 2 matrix.
![\begin{bmatrix} -5 & 1\\1 & 4 \end{bmatrix}](https://tex.z-dn.net/?f=%20%5Cbegin%7Bbmatrix%7D%20-5%20%26%201%5C%5C1%20%26%204%20%5Cend%7Bbmatrix%7D%20)
determinant = -5 * 4 - 1 * 1 = -20 - 1 = -21
Answer:
Step-by-step explanation:
Given that:
Population Mean = 7.1
sample size = 24
Sample mean = 7.3
Standard deviation = 1.0
Level of significance = 0.025
The null hypothesis:
![H_o: \mu = 7.1](https://tex.z-dn.net/?f=H_o%3A%20%5Cmu%20%3D%207.1)
The alternative hypothesis:
![H_a: \mu > 7.1](https://tex.z-dn.net/?f=H_a%3A%20%5Cmu%20%3E%207.1)
This test is right-tailed.
![degree \ of \ freedom= n - 1 \\ \\ degree \ of \ freedom = 24 - 1 \\ \\ degree \ of \ freedom = 23](https://tex.z-dn.net/?f=degree%20%5C%20of%20%5C%20%20freedom%3D%20%20n%20-%201%20%5C%5C%20%5C%5C%20degree%20%5C%20%20of%20%5C%20%20freedom%20%20%3D%20%2024%20-%201%20%5C%5C%20%5C%5C%20degree%20%5C%20of%20%5C%20%20freedom%20%20%20%3D%2023)
Rejection region: at ∝ = 0.025 and df of 23, the critical value of the right-tailed test ![t_c = 2.069](https://tex.z-dn.net/?f=t_c%20%3D%202.069)
The test statistics can be computed as:
![t = \dfrac{ \hat X - \mu_o}{\dfrac{s}{\sqrt{n}}}](https://tex.z-dn.net/?f=t%20%3D%20%5Cdfrac%7B%20%5Chat%20X%20-%20%5Cmu_o%7D%7B%5Cdfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%7D%7D)
![t = \dfrac{ 7.3-7.1}{\dfrac{1}{\sqrt{24}}}](https://tex.z-dn.net/?f=t%20%3D%20%5Cdfrac%7B%207.3-7.1%7D%7B%5Cdfrac%7B1%7D%7B%5Csqrt%7B24%7D%7D%7D)
![t = \dfrac{0.2}{0.204}](https://tex.z-dn.net/?f=t%20%3D%20%5Cdfrac%7B0.2%7D%7B0.204%7D)
t = 0.980
Decision rule:
Since the calculated value of t is lesser than, i.e t = 0.980 <
, then we do not reject the null hypothesis.
Conclusion:
We conclude that there is insufficient evidence to claim that the population mean is greater than 7.1 at 0.025 level of significance.
In a quadratic equation with the general formula of:
ax^2 + bx + c = 0
The discriminant is equal to b^2 - 4(a)(c). If the answer is a perfect square, then there are two real numbers. If not, then there are no real number root.
The discriminant for this equation is
(-6)^2 - 4(3)(1) = 24
Since 24 is not a perfect square, there are no real number roots.