Answer:
1.1 : C - x^2 + x - 2
1.2 : A - 4a^2 - 6b^2 + 12
Step-by-step explanation:
When we have the expression p(x) - q(x), we can substitute those functions in:
(x^2 + 2x - 5) - (x - 3)
We can distribute:
x^2 + 2x - 5 - x + 3
and then combine like terms(2x & -x, -5 & 3)
x^2 + x - 2
This is the same as C.
We can start by distributing:
a^2 - 2b^2 + 3 - 4b^2 + 5 + 3a^2 + 4
Now, we can combine all the a^2 terms(a^2 & 3a^2):
4a^2 - 2b^2 + 3 - 4b^2 + 5 + 4
Then, we can combine the b^2 terms(-2b^2 & -4b^2):
4a^2 - 6b^2 + 3 + 4 + 5
and lastly, all the constants:
4a^2 - 6b^2 + 12
This aligns with option A
125 i believe i’m not sure
Answer:
66
Step-by-step explanation:
Find other side:
116 + x = 180
-116 -116
------------------
x = 64
Find missing triangle angle:
50 + 64 + x = 180
114 + x = 180
-114 -114
-------------------
x = 66
Hope this helped.
U(x) = f(x).(gx)
v(x) = f(x) / g(x)
Use chain rule to find u(x) and v(x).
u '(x) = f '(x) g(x) + f(x) g'(x)
v ' (x) = [f '(x) g(x) - f(x) g(x)] / [g(x)]^2
The functions given are piecewise.
You need to use the pieces that include the point x = 1.
You can calculate f '(x) and g '(x) at x =1, as the slopes of the lines that define each function.
And the slopes can be calculated graphycally as run / rise of each graph, around the given point.
f '(x) = slope of f (x); at x = 1, f '(1) = run / rise = 1/1 = 1
g '(x) = slope of g(x); at x = 1, g '(1) = run / rise = 1.5/ 1 = 1.5
You also need f (1) = 1 and g(1) = 2
Then:
u '(1) = f '(1) g(1) + f(1) g'(1) = 1*2 + 1*1.5 = 2 + 1.5 = 3.5
v ' (x) = [f '(1) g(1) - f(1) g(1)] / [g(1)]^2 = [1*2 - 1*1.5] / (2)^2 = [2-1.5]/4 =
= 0.5/4 = 0.125
Answers:
u '(1) = 3.5
v '(1) = 0.125
2+2=4 2 X 2 = 4 2 X 3 = 6