The third term of the expansion is 6a^2b^2
<h3>How to determine the third term of the
expansion?</h3>
The binomial term is given as
(a - b)^4
The r-th term of the expansion is calculated using
r-th term = C(n, r - 1) * x^(n - r + 1) * y^(r - 1)
So, we have
3rd term = C(4, 3 - 1) * (a)^(4 - 3 + 1) * (-b)^(3-1)
Evaluate the sum and the difference
3rd term = C(4, 2) * (a)^2 * (-b)^2
Evaluate the exponents
3rd term = C(4, 2) * a^2b^2
Evaluate the combination expression
3rd term = 6 * a^2b^2
Evaluate the product
3rd term = 6a^2b^2
Hence, the third term of the expansion is 6a^2b^2
Read more about binomial expansion at
brainly.com/question/13602562
#SPJ1
Answer:
6x = 30
Step-by-step explanation:
6x
Let x = 5
6*5 = 30
6x = 30
Answer:
y = 8, x = 4
Step-by-step explanation:
idk whether y is hardcover or paperback of vice versa and i can't explain if there's a timelimit it'll take too long
The ball will bounce 72 cm high if dropped from a height of 120 cm
<u>Solution:</u>
Given, The height that a ball bounces varies directly with the height from which it is dropped.
A certain ball bounces 30 cm when dropped from a height of 50 cm.
We have to find how high will the ball bounce if dropped from a height of 120 cm?
Now, according to given information,
When dropped from 50 cm ⇒ bounces 30 cm
Then, when dropped from 120 cm ⇒ bounces "n" cm
Now by Chris cross method, we get,

Hence, the ball bounces 72 cm high.