Answer:
Colonization, or colonisation refers to large-scale population movements where the migrants maintain strong links with their or their ancestors' former country, gaining significant privileges over other inhabitants of the territory by such links.
The continual input of energy, mostly from sunlight, sustains the process of life. Sunlight allows plants, algae and cyanobacteria to use photosynthesis to convert carbon dioxide and water into organic compounds like carbohydrates. This process is the fundamental source of organic material in the biosphere. There are a few exceptions to this, such as ecosystems living around hydrothermal vents on the ocean floor, which derive their energy from the chemical compounds such as methane and hydrogen sulfide. In either case, the overall productivity of an ecosystem is controlled by the total energy available.
Explanation:
Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for the control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events.
Character displacement refers to the phenomenon where differences among similar species whose distributions overlap geographically are accentuated in regions where the species co-occur, but are minimized or lost where the species' distributions do not overlap.