see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
Answer:
30 s
Step-by-step explanation:
When the ball hits the ground h=0. To find the time t when this happens we must solve the equation h=0.
●h= 0
● -12t^2+360t =0
● t(-12t +360) = 0
● t = 0 or -12t +360 =0
● t=0 or -12t = -360
● t=0 or 12t =360
● t=0 or t=360/12
● t=0 or t= 30
The equation has two solutions.
The ball was fired with an initial speed of 800 feet per second so it cannot hit the ground at t=0.
So the ball hits the ground after 30 s.
Answer:
2.088
Step-by-step explanation:
Trust me I am in high school honors algebra with almost an average of 100.
Answer:
Step-by-step explanation:
Co-ordinates of F, G and H are:
F (-4, 5)
G (1, 10)
H (-9, 10)
You can find the lengths of sides by using the distance formula:
<em>length</em>(FG) =
=
units
Similarly,
<em>length</em>(GH) = 10 units
<em>length</em>(HF) =
units
Hence, perimeter will be:
P = <em>length</em>(FG) + <em>length</em>(GH) + <em>length</em>(HF) =
units