A. The magnitude of the spring force (in N) acting upon the object is 15.9 N
B. The magnitude of the object's acceleration (in m/s²) is 30.58 m/s²
C. The direction of the acceleration vector points toward the equilibrium position (i.e., to the left in the figure).
<h3>A. How to determine the force </h3>
- Extension (e) = 0.150 m
- Spring constant (K) = 106 N/m
- Force (F) = ?
F = Ke
F = 106 × 0.15
F = 15.9 N
<h3>B. How to determine the acceleration</h3>
- Mass (m) = 0.52 Kg
- Force (F) = 15. 9 N
- Acceleration (a) =?
F = ma
Divide both sides by m
a = F / m
a = 15.9 / 0.52
a = 30.58 m/s²
<h3>C. How to determine the direction of the acceleration vector</h3>
Considering the diagram, we can see that the spring was pulled away from the equilibrium point.
Thus, when the spring is released, it will move toward the equilibrium point. This is also true about the acceleration.
Therefore, we can conclude that the direction of the acceleration vector is towards the equilibrium point.
Learn more about spring constant:
brainly.com/question/9199238
#SPJ1
Answer:
1000m/s
Explanation:
velocity(v)=momentum(p)/mass
=100/.1
=1000m/s
Answer:
A curved mirror is a mirror with a curved reflecting surface. The surface may be either convex or concave. Most curved mirrors have surfaces that are shaped like part of a sphere, but other shapes are sometimes used in optical devices.
Explanation:
Answer:
The magnitude of the impulse delivered to the baseball is 7.0 Ns
Explanation:
Given;
mass of the foul ball, m = 0.14 kg
initial velocity, u = 40 m/s
final velocity, v = 30 m/s in perpendicular direction
Impulse is given as change in momentum;
initial momentum in horizontal direction, Pi = mu
Pi = 0.14 x 40 = 5.6 Ns
final momentum in perpendicular direction, Pf = mv
Pf = 0.14 x 30
Pf = 4.2 Ns
The resultant impulse is given by;
J² = 5.6² + 4.2²
J² = 49
J = √49
J = 7.0 Ns
Therefore, the magnitude of the impulse delivered to the baseball is 7.0 Ns
Answer:
Options A and D are correct
Explanation:
The thermal conductivity of a metal is the property of a metal to allow heat flow through it. conductivity is higher in conductors and low in insulators. Thermal conductivity is high in metals due to the metallic bonds that exist in metals and the presence of free electrons within the metal which allow easy flow of heat from one atom to another.From the problem the rod which contains freer electrons will allow more heat to flow easily hence have a higher thermal conductivity.
Thermal conductivity has the formula below;

- k is thermal conductivity,
- A is cross sectional area
- Q is quantity of heat transferred to material.
- ΔT is temperature change.
From the above equation we can see that thermal conductivity is inversely proportional to A and directly proportional to L. This mean the rod with less area will have a higher thermal conductivity and the rod with a higher length will have higher k. Hence option C i wrong and option D is correct.
For specific heat, its very much different from thermal conductivity. Specific heat is the ability of a material to hold heat while thermal conductivity is the ability of heat to flow through a material.