If Earth had no atmosphere, a falling object would never reach terminal velocity. Terminal velocity is created by friction between a thing and the atmosphere. If there is no friction between objects, the object will accelerate forever.
Answer:
The change in internal energy of the system = -772kJ
Explanation:
Given :
Heat lost by the system , a = -266KJ
Workdone by the system, W = -506KJ
The first law of thermodynamics states that:
Change in internal energy = q + w
Substituting values into the equation
Change in internal energy = (-266KJ) + (-506KJ)
Change in internal energy = -722KJ
Preasure at the bottom would be Air Pressure at the top added to the pressure due to the water height.
so pressure = air pressure + hdg
where,
h = depth of the lake, (432ft into metres)
d = density of water (1000kg/m^3)
g = 9.81 m/s^2 (approx.)
Answer:
Technician A
Explanation:
Often referred to as the profile or series, the aspect ratio of a tire is determined by dividing a tire’s section height by its section width when the tire is: inflated to maximum air pressure, mounted on the approved measuring rim, and under no load. This rules out Technician B.
A tire with a lower aspect ratio responds to lateral force more effectively than a tire with a higher aspect ratio. The aspect ratio affects steering stability. Generally, the shorter the sidewall, or the lower the aspect ratio, the less time it takes to transmit the steering input from the wheel to the tread. The result is quicker steering response. Aspect ratio also affects the tread contact patch. As a rule, a low-profile tire produces a wider tread contact patch. This wider tread contact patch creates a stiffer footprint that reduces distortion and provides improved cornering traction. Aspect ratio also impacts ride. A low-profile tire usually has a stiffer ride than the standard aspect ratio of 75 or more.
The Balmer light series comes under the visible light.
<u>Explanation:</u>
The transition of electrons from higher to energy level with 2 as principal quantum number results in the spectral emission lines of hydrogen atom and this series of lines are known as Balmer series.
Mostly, these lines has the wavelength of more than 400 nm but lesser than 700 nm. Generally of the four categories namely, 410, 434, 486, 656 nm which comes under the type of visible light. So, it can be concluded that the Balmer series light falls under visible light.
In astronomy, Balmer lines occur in various stellar (celestial or astronomical) objects due to the higher content of hydrogen in the universe. Therefore, they are commonly seen and relatively strong when compared to other element lines.
Note: nm is nanometer (one billionth of a meter in length)