The area between the two functions is 0
<h3>How to determine the area?</h3>
The functions are given as:
f₁(x)= 1
f₂(x) = |x - 2|
x ∈ [0, 4]
The area between the functions is
A = ∫[f₂(x) - f₁(x) ] dx
The above integral becomes
A = ∫|x - 2| - 1 dx (0 to 4)
When the above is integrated, we have:
A = [(|x - 2|(x - 2))/2 - x] (0 to 4)
Expand the above integral
A = [(|4 - 2|(4 - 2))/2 - 4] - [(|0 - 2|(0 - 2))/2 - 0]
This gives
A = [2 - 4] - [-2- 0]
Evaluate the expression
A = 0
Hence, the area between the two functions is 0
Read more about areas at:
brainly.com/question/14115342
#SPJ1
Answer:
I am pretty sure that the answer is 19 1/15! Hope this helps!!!!!!
Answer:
x = 69°
Step-by-step explanation:
1). JFGHI is a pentagon, every angle in a Pentagon is equal to 108°.
2). angle JIH + angle HIE = 180°; angle JIH = 108, so angle HIE = 72°.
3). angle JDI is equal to 39° and angle IEH; so angle IEH = 39°
4). Now we know 2 out of the three angles in the triangle IHE, so we can find x!
5). x + angle HIE + angle IEH = 180°
x + 72° + 39° = 180°
x = 69°
Answer:
12
Step-by-step explanation:
so $8.06 / .65 = 12.4 but you cannot buy .4 of a bagel so the answer would just be 12