Answe70
Step-by-step explanation:
Answer:
224
Step-by-step explanation:
polynomial degree:224
leading term:7x^223
leading coefficient:7
Answer:
<em>True
</em>
Step-by-step explanation:
<em>Rate Of Change Of Functions
</em>
Given a function y=f(x), the rate of change of f can be computed as the slope of the tangent line in a specific point (by using derivatives), or an approximation by computing the slope of a secant line between two points (a,b) (c,d) that belong to the function. The slope can be calculated with the formula

If this value is calculated with any pair of points and it always results in the same, then the function is linear. If they are different, the function is non-linear.
Let's take the first two points from the table (1,1)(2,4)

Now, we use the second and the third point (2,4) (3,9)

This difference in values of the slope is enough to state the function is non-linear
Answer: True
First, solve for the slope. This can be found by looking at the y and x intercepts. At x = 0, y = 1.5. At x = 2, y = 0.
Slope is defined as Δy/Δx, or the change in y over the change in x. This means that in order to calculate the slope, you must find the difference between the values of y and divide it by the difference in the values of x for the two points to determine the slope between them.
(0 - 1.5)/(2-0) = (-1.5)/2 = -0.75 or -3/4
Now that you have the slope, we can write the equation in slope intercept form, y = mx + b, where m is the slope we calculated and b is the y intercept, 1.5.
y = (-3/4)x + 1.5
The area of the parallelogram is 40 centimeters