We can calculate using cosinus method in triangle
c² = a² + b² - 2ab cos c
Plug in the number to the formula
c² = a² + b² - 2ab cos c
c² = 10² + 8² - 2(10)(8) cos 105°
c² = 100 + 64 - 160 cos 105°
c² = 164 - 160 (-0.26)
c² = 164 + 41.6
c² = 205.6
c = √205.6
c =14.34
C is 14.34 unit length
Answer:
3x times 24 widgets
Step-by-step explanation:
0.625
divide 5 by 8 is 0.625 rounded would be 0.63
Answer:
Correct option: (a) 0.1452
Step-by-step explanation:
The new test designed for detecting TB is being analysed.
Denote the events as follows:
<em>D</em> = a person has the disease
<em>X</em> = the test is positive.
The information provided is:

Compute the probability that a person does not have the disease as follows:

The probability of a person not having the disease is 0.12.
Compute the probability that a randomly selected person is tested negative but does have the disease as follows:
![P(X^{c}\cap D)=P(X^{c}|D)P(D)\\=[1-P(X|D)]\times P(D)\\=[1-0.97]\times 0.88\\=0.03\times 0.88\\=0.0264](https://tex.z-dn.net/?f=P%28X%5E%7Bc%7D%5Ccap%20D%29%3DP%28X%5E%7Bc%7D%7CD%29P%28D%29%5C%5C%3D%5B1-P%28X%7CD%29%5D%5Ctimes%20P%28D%29%5C%5C%3D%5B1-0.97%5D%5Ctimes%200.88%5C%5C%3D0.03%5Ctimes%200.88%5C%5C%3D0.0264)
Compute the probability that a randomly selected person is tested negative but does not have the disease as follows:
![P(X^{c}\cap D^{c})=P(X^{c}|D^{c})P(D^{c})\\=[1-P(X|D)]\times{1- P(D)]\\=0.99\times 0.12\\=0.1188](https://tex.z-dn.net/?f=P%28X%5E%7Bc%7D%5Ccap%20D%5E%7Bc%7D%29%3DP%28X%5E%7Bc%7D%7CD%5E%7Bc%7D%29P%28D%5E%7Bc%7D%29%5C%5C%3D%5B1-P%28X%7CD%29%5D%5Ctimes%7B1-%20P%28D%29%5D%5C%5C%3D0.99%5Ctimes%200.12%5C%5C%3D0.1188)
Compute the probability that a randomly selected person is tested negative as follows:


Thus, the probability of the test indicating that the person does not have the disease is 0.1452.
Hello there!
2x - 7 = 3
Solve for x
2x = 3 + 7
2x = 10
x = 10/2
x = 5
Therefore, the number of x in the equation is 5
Let me know if you have additional question!