If you would like to solve for x: 3x - 24 = 81, you can do this using the following steps:
<span>3x - 24 = 81
</span>3x = 81 + 24
3x = 105
x = 105 / 3
x = 35
The correct result would be 35.
The standard deviation for the number of people with the genetic mutation in such groups is 3.1305.
<h3>Standard Deviation</h3>
In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean of the set, while a high standard deviation indicates that the values are spread out over a wider range.
Let X be the number of people with genetic mutation is a group of 500,
The formula of standard deviation is given as

The standard deviation of the given sample is 3.1305
Learn more on standard deviation here;
brainly.com/question/28290366
#SPJ1
16 ounces in a pound
16*3=48
48 ounces of mixed nuts
My answer -
<span>1. Use symbols (not words) to express quotient
2. Use exponent symbol (^) to denote exponents
3. Just write out question number, question, and choices. No need for
extra information (such as points). Also, don't leave blank lines
between choices. This extraneous that we don't need just makes your
whole question very very long, and means a lot of scrolling on our part.
4. You should only post 2 or 3 questions at a time.
1) (6x^3 − 18x^2 − 12x) / (−6x) = −x^2 + 3x + 2 ----> so much simpler to read !
2) (d^7 g^13) / (d^2 g^7) = d^(7−2) g^(13−7) = d^5 g^6 ----> much easier to read !
3) (4x − 6)^2 = 16x^2 − 24x − 24x + 36 = 16x^2 − 48x + 36
4) (x^2 / y^5)^4 = (x^2)^4 / (y^5)^4 = x^8 / y^20
5) (3x + 5y)(4x − 3y) = 12x^2 − 9xy + 20xy − 15y^2 = 12x^2 + 11xy − 15y^2
6) (3x^3y^4z^4)(2x^3y^4z^2) = (3*2) x^(3+3) y^(4+4) z^(4+2) = 6 x^6 y^8 z^6
7) 5x + 3x^4 − 7x^3 ----> Fourth degree trinomial
8) (5x^3 − 5x − 8) + (2x^3 + 4x + 2) = 7x^3 − x − 6
9) (x − 1) + (2x + 5) − (x + 3) = x + 1
10) (−4g^8h^5k^2)0(hk^2)^2 = 0 (anything multiplied by 0 = 0)
or.. (−4g^8h^5k^2)^0(hk^2)^2 = 1 (h^2 (k^2)^2) = h^2 k^4
Last question shows why it is so important to use proper symbols (such
as ^ to indicate exponents). Without such symbols, I could not tell if
the 0 was an actual number and part of multiplication, of if 0 was an
exponent of the expression preceding it.
P.S
Glad to help you have an AWESOME!!! day :)
</span>