Answer:
4 m
Explanation:
don't think so that's the answer
By using the Plancks-Einstein equation, we can find the energy;
E = hf
where h is the plancks constant = 6.63 x 10⁻³⁴
f = frequency = 3.55 x 10¹⁷hz
E = (6.63 x 10⁻³⁴) x (3.55 x 10¹⁷)
E = 2.354 x 10⁻¹⁶J
The first step of the STOP procedure is S, which stands for "stop." This indicates that you should stop what you're doing to place your full attention on the situation at hand. This will allow you to stay focused on what's specifically happened to an athlete.
Answer:
The velocity with which the mass will hit the floor is 
Explanation:
If the tension in the string is
, for
we have
,
and for the mass

From these equations we solve for
and get:

The kinematic equation

gives the final velocity
of a particle, when its initial velocity was
, and has traveled a distance
while undergoing acceleration
.
In our case
(the initial velocity of the particles is zero)

which gives us



which is the velocity with which the mass
will hit the floor.
Answer:
281.6 K
Explanation:
The speed of sound in an ideal gas is given by c = √(γKT/m).
From the question speed of sound in Ne, c₁ = 2c₂ speed of sound in Kr
c₁ = √(γKT₁/m₁) and c₂ = √(γKT₂/m₂)
So √(γKT₁/m₁) = 2√(γKT₂/m₂) where T₁, m₁ and T₂, m₂ are the temperatures and atomic masses of Neon and Krypton respectively.
So, √(T₁/m₁) = 2√(T₂/m₂)
(T₁/m₁) = 4(T₂/m₂) (squaring both sides)
T₁ = 4(T₂m₁/m₂)
Given that m₁ = 20.2 u , m₂ = 83.8 u, T₂ = 292 K
T₁ = 4(292 × 20.2/83.8) K = 23593.6/83.8 = 281.55 K ≅ 281.6 K