Answer:
The answer is
<h2>84.9 kPa</h2>
Explanation:
Using Boyle's law to find the final pressure
That's

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we are finding the final pressure

From the question
P1 = 115 kPa
V1 = 480 mL
V2 = 650 ml
So we have

We have the final answer as
<h3>84.9 kPa</h3>
Hope this helps you
. we need like a picture you something what’re you trying to ask
Answer:

Explanation:
Given:
angular speed of rotation of friction-less platform, 
moment of inertia with extended weight, 
moment of inertia with contracted weight, 
<u>Now we use the law of conservation of angular momentum:</u>



The angular speed becomes faster as the mass is contracted radially near to the axis of rotation.
Answer:

Explanation:
Two identical sticky masses m are moving in the xy-plane, with their momenta at an angle of φ with one another. They are each moving at the same speed v when they collide at the origin of the coordinates and stick together. After the collision, the masses move at an angle −θ2 with respect to the +x axis at speed v2 .1. What was the angle φ?
from the principle of momentum
In a system of colliding bodies,we know that the total momentum before collision will equal to the total momentum after collision.
Take note that momentum is the product of mass and velocity
momentum before collision=momentum after collision
mass, m
u=initial velocity of the identical masses
v2=the common velocity after the collision
Note that the collision is inelastic , since they both moved with the same velocity
umcosφ+umcosφ=(m+m)v2cos−θ2
2mucosφ=2mv2cos−θ2
