Hey there!
Molar mass of O3 = 47.9982 g/mol
therefore:
1 mole O₃ --------------------- 47.9982 g
moles O₃ ---------------------- 24 g
moles O₃ = 24 x 1 / 47.9982
moles O₃ = 24 / 47.9982
moles O₃ = 0.500 moles
Hope this helps!
The law is Newton's first law or called the law of inertia; Which just means that an object at rest stays at rest and an object in motion stays in motion and continues at the same speed and in the same direction unless acted upon by an outside force force.
Neutralization reactions can be used in a laboratory setting in order t<span>o dispose of chemicals. When spills happens, for instance an acid is on the floor, you can use a base to neutralize the spill. Hope this answers the question. Have a nice day.</span>
Work done can be calculated from force and distance the object moves.
The equation relating work done, force and distance is,

Given the force acting on the object = 289 N
Distance the object moves = 29 m
Calculating the work done from force and distance:
Work = Force * Distance
= 289 N * 29 m
= 8381 J
= 
The pressure exerted by 0.400 moles of carbon dioxide in a 5.00 Liter container at 25 °C would be 1.9563 atm or 1486.788 mm Hg.
<h3>The ideal gas law</h3>
According to the ideal gas law, the product of the pressure and volume of a gas is a constant.
This can be mathematically expressed as:
pv = nRT
Where:
p = pressure of the gas
v = volume
n = number of moles
R = Rydberg constant (0.08206 L•atm•mol-1K)
T = temperature.
In this case:
p is what we are looking for.
v = 5.00 L
n = 0.400 moles
T = 25 + 273
= 298 K
Now, let's make p the subject of the formula of the equation.
p = nRT/v
= 0.400 x 0.08206 x 298/5
= 1.9563 atm
Recall that: 1 atm = 760 mm Hg
Thus:
1.9563 atm = 1.9563 x 760 mm Hg
= 1486.788 mm Hg
In other words, the pressure exerted by the gas in atm is 1.9563 atm and in mm HG is 1486.788 mm Hg.
More on the ideal gas law can be found here: brainly.com/question/28257995
#SPJ1